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1. Compute matrix Mω=
2. To optimize cost  J(Z) = tr{ZT Mω Z} subjet to ZTZ=I ,

compute eigen-values and -vectors of matrix Mω
relaxing elements of Z to a real value

Each node is represented by K-1 eigen-vectors
3. Assign a cluster label to each node by k-means.

(k-means outputs Cost                in spectral space.)

A Spectral Clustering Approach to Optimally Combining 
Numerical Vectors with a Modular Network

Motoki Shiga, Ichigaku Takigawa, Hiroshi Mamitsuka
Bioinformatics Center, ICR, Kyoto University, Japan

Ex. Gene analysis : gene expression, metabolic pathway …, etc.
Web page analysis : word frequency, hyperlink, …, etc.

1. Heterogeneous Data Clustering

Gene

Gene expression 

3
2

1

4
5

76

Numerical
Vector

Gene network

k-means, SOM, etc.

Normalized cut, 
Ratio cut, etc.

Heterogeneous data : various information related to an interest

#experiments = S

1st expression value

S-
th

va
lu

e

Clustering, a major research subject in data mining, has been successfully applied to a wide variety of areas 
in the real world. In this paper, we address the issue of clustering numerical vectors with a network. This is a 
general setting which can be found in a lot of applications and basically equivalent to constrained clustering by 
Wagstaff and Cardie [Wagstaff2000] and semi-supervised clustering  by Basu et al. [Basu2004], but our focus 
is more on the optimal combination of two heterogeneous data sources, numerical vectors and a network. 

An application of this setting is web pages which can be numerically vectorized by their contents, e.g. term 
frequencies, and which are hyperlinked to each other, showing a network. Another typical application is genes 
whose behavior can be numerically measured and a gene network can be given from another data source.

We first define a new graph clustering measure which we call normalized network modularity, by balancing 
the cluster size of the original modularity. We then propose a new clustering method which integrates the cost 
of clustering numerical vectors with the cost of maximizing the normalized network modularity into a spectral 
relaxation problem. Our learning algorithm is based on spectral clustering which makes our issue an 
eigenvalue problem and uses k-means for final cluster assignments. A significant advantage of our method is 
that we can optimize the weight parameter for balancing the two costs from the given data by choosing the 
minimum total cost.

We evaluated the performance of our proposed method using a variety of datasets including synthetic data 
as well as real-world data from molecular biology. Experimental results showed that our method is effective 
enough to have good results for clustering by numerical vectors and a network.

Abstract

To improve clustering accuracy, 
combine numerical vectors + a network 

for ω = 0…1

end
Optimize weight ω

Eigen-vector e1

e 2

x
x

is sum of dissimilarity 
(cluster center <-> data)

e1

e 2

3.Our Proposed Spectral Clustering

Z : set of whole nodes, Zk : set of nodes in cluster k, L(A,B) : #edges between A and B

Normalized Network Modularity

High Low

= density of intra-cluster edges

normalize by cluster size

# total edges# intra-edges

(Negative) Normalized modularitycosine dissimilarity

Mω

Numerical vectors (von Mises-Fisher distribution)
θ = 1 505

x1
x2

x3

x1
x2

x3

x1
x2

x3

Network #nodes = 400, #edges = 1600
Modularity = 0.375 0.450 0.525

4. Experiments
4-1. Synthetic Data

ω ωω

N
M

I

0.450

C
os

t sp
ec

tra
l

θ = 1 

θ = 50

Numerical vectors only
(k-means)

Network only
(maximum modularity)

Modularity = 0.375

θ=5 

H(C) : Entropy of probability variable C,  
C : Resultant cluster,  G : KEGG metabolic function

The more similar clusters
C and G are, the larger the NMI.

Normalized Mutual Information 
(NMI) 

4-2. Synthetic Data (numerical vector) 
+ Real Data (gene network)

True cluster
(#clusters = 10)

Resultant cluster
(ω=0.5, θ=10)

Best NMI is in 0 < ω < 1    
Can optimize weight ω
using Cost spectral

Gene network  by KEGG metabolic pathway 

NMI

ω

Costspectral

ω

θ = 10 

θ= 102

θ = 103

4-3. Real Genomic Data

ωω

NMICostspectral
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•Numerical vectors  : Hughes’ expression data
(Hughes, et al., cell, 2000)

•Gene network  :  KEGG metabolic pathway
(M. Kanehisa, etc. NAR, 2006)
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2.  Cost Combining Numerical Vectors
with a Network


