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Ex. Gene analysis : gene expression, metabolic pathway, …, etc.

Web page analysis : word frequency, hyperlink, …, etc.

Heterogeneous Data Clustering
Heterogeneous data : various information related to an interest

Gene
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k-means
SOM, etc.

M. Shiga, I. Takigawa and H. Mamitsuka, ISMB/ECCB 2007.

Gene expression #experiments = S

metabolic
pathway Network

Minimum edge cut
Ratio cut, etc.

To improve clustering accuracy, 
combine numerical vectors + network 



Related work : semi-supervised clustering
・Local property

Neighborhood relation

-must-link edge, cannot-link edge
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Proposed method
・Global property (network modularity)

・Soft constraint
-Spectral clustering

・Hard constraint (K. Wagstaff and C. Cardie, 2000.)

・Soft constraint (S. Basu etc., 2004.)
- Probabilistic model (Hidden Markov random field)
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Spectral Clustering
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L. Hagen, etc., IEEE TCAD, 1992.,  J. Shi and J. Malik, IEEE PAMI, 2000.

1.  Compute affinity(dissimilarity) matrix M from data

3.  Assign a cluster label to each node ( by k-means ) 

2.  To optimize cost
J(Z) = tr{ZT M Z} subject to ZTZ=I

where Z(i,k) is 1 when node i belong to cluster k, otherwise 0,

compute eigen-values and -vectors of matrix M
by relaxing Z(i,k) to a real value

Eigen-vector e1

e 2

Each node is by one or more
computed eigenvectors

Trace optimization



Cost combining numerical vectors 
with a network
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What cost?

To define a cost of  a network,
use a property of complex networks

networkCost of numerical vector 

cosine dissimilarity

N : #nodes, 
Y : inner product of normalized numerical vectors



Complex Networks

Ex. Gene networks, 
WWW, 
Social networks, …, etc.

Property
•Small world phenomena
•Power law
•Hierarchical structure
•Network modularity

Ravasz, et al., Science, 2002.
Guimera, et al., Nature, 2005.
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Z : set of whole nodes
Zk : set of nodes in cluster k
L(A,B) : #edges between A and B

Normalized Network Modularity

High Low

= density of intra-cluster edges

Guimera, et al., Nature, 2005., Newman, et al., Phy. Rev. E, 2004. 9

# total edges# intra-edges

normalize by cluster size



Cost Combining Numerical Vectors 
with a Network
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Mω

networkCost of numerical vector 

cosine dissimilarity Normalized modularity
(Negative)



Our Proposed Spectral Clustering

1. Compute matrix Mω=

2. To optimize cost  J(Z) = tr{ZT Mω Z} subjet to ZTZ=I ,

compute eigen-values and -vectors of matrix Mω by
relaxing elements of Z to a real value

Each node is represented by K-1 eigen-vectors
3. Assign a cluster label to each node by k-means.

(k-means outputs                   in spectral space.)

11

for ω = 0…1

end
・Optimize weight ω

Eigen-vector e1

e 2

x

x
is sum of dissimilarity 
(cluster center <-> data)

e1

e 2
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Synthetic Data
Numerical vectors (von Mises-Fisher distribution)

θ = 1 505
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Network (Random graph) #nodes = 400, #edges = 1600

Modularity = 0.375 0.450 0.525
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Results for Synthetic Data
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Modularity = 0.375

・Best NMI (Normalized Mutual Information) is in 0 < ω < 1
・Can be optimized using Costspectral 14
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Results for Synthetic Data
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・Best NMI (Normalized Mutual Information) is in 0 < ω < 1
・Can be optimized using Costspectral 15
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Modularity = 0.375

θ = 5 



Synthetic Data (Numerical Vector)
+ Real Data (Gene Network)

True cluster
(#clusters = 10)

Resultant cluster
(ω=0.5, θ=10)

・Best NMI is in 0 < ω < 1 
・Can be optimized using Costspectral
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Summary

• New spectral clustering method proposed
combining numerical vectors with a network
・Global network property (normalized network modularity)

・Clustering can be optimized by the weight

• Performance confirmed experimentally
・Better than numerical vectors only and a network only
・Optimizing the weight with synthetic dataset and 

semi-real dataset
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Thank you for your attention!


