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Proofs for Section: The AGILE method
Proof of Lemma 1
Proof. According to the definition of Ut andWt, we have
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where ev is the vector of canonical basis with its v-th element equal to 1 and 0 otherwise.
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trace norm actually equal to the `1-norm on the singular values. According to (1) and singular value decomposition, we
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According to Cauchy–Schwarz inequality, the following inequality holds,
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where ‖·‖op denotes the matrix operator norm, such that given an arbitrary matrix A, ‖A‖op equals to the largest singular
value of A,
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Then the following equality holds,
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Again, according to Cauchy–Schwarz inequality, we have

‖Utwt‖2 ≤ ‖Ut‖op ‖wt‖2 . (6)

Proof of Lemma 2
To verify Lemma 2, we need to prove the correctness of the following Lemma.

Lemma 1. For any real matrix A ∈ Rn×m, the following inequality holds;

‖A‖F ≤ ‖A‖∗ ≤ ‖A‖2,1 . (7)

Proof. For any real matrix A ∈ Rn×m, we have the following definitions for matrix norms
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where Diag(AA>) ∈ Rn×n denotes a diagonal matrix with same diagonal elements of AA> ∈ Rn×n. Let the SVD of A be
A = UΣV>, where U ∈ Rn×r, V ∈ Rm×r and Σ ∈ Rr×r with the i-th diagonal Σii = σi, we have
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indicating that ‖A‖F and ‖A‖∗ equal to `2-norm and `1-norm of singular values of A, respectively. Since for an arbitrary
vector v, the inequality ‖v‖2 ≤ ‖v‖1 is always satisfied, we then have ‖A‖F ≤ ‖A‖∗.
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where mii is the i-th diagonal element of M. Hence we have ‖A‖∗ ≤ ‖A‖2,1.

According to Lemma 1 and the fact
∥∥A>∥∥

2,1
= ‖A‖1,2, we have the following inequality

‖UtWt‖F ≤ ‖UtWt‖∗ ≤ ‖UtWt‖1,2 . (12)

Given the facts that ‖UtWt‖1,2 = ‖Utwt‖G1
in (2) and ‖UtWt‖F = ‖Utwt‖2 in (5), the above inequality becomes

‖Utwt‖2 ≤ ‖UtWt‖∗ ≤ ‖Utwt‖G1
. (13)

Implementation and convergence analysis for Section: Optimization algorithm
In Algorithm 1, we provide the optimization algorithm of AGILE discussed in Sec.4 of the main paper. Note that, we apply
fast-ADMM [Goldstein et al., 2014] and Accelerated Proximal Method (APM) [Nesterov, 2013] in Algorithm 1 to accelerate
the optimization algorithm, leading to a quadratic convergence rate. In Algorithm 1, prox-`2,1 and prox-`G1 denote the proximal
operator for `2,1-norm regularized problem and `G1 -norm regularized problem, respectively.

Algorithm 1 AGILE: Optimization algorithm

Input: {{Xv
t }Vv=1}Tt=1, {{Uv

t }Vv=1}Tt=1, {yt}Tt=1, α, β, γ.
Output: Θ = W + H.

1: Initialize W, H, P and Q, and set a0, a1 := 1, k := 1.
2: repeat
3: Ŵ(k) ←W(k) + ak−1−1

ak

(
W(k) −W(k−1)).

4: Ĥ(k) ← H(k) + ak−1−1
ak

(
H(k) −H(k−1)).

5: P̂(k) ← P(k) + ak−1−1
ak

(
P(k) −P(k−1)).

6: Q̂(k) ← Q(k) + ak−1−1
ak

(
Q(k) −Q(k−1)).

7: Determine the learning rate η by line search.
8: W(k+1) ← prox-`2,1

(
Ŵ(k) − η∇wf(Ŵ(k)), αη

)
.

9: H(k+1) ← prox-`G1

(
Ĥ(k) − η∇hf(Ĥ(k)), γη

)
.

10: [M(k),Σ(k),N(k)]← SVD
(
UW(k) − Q̂(k)

)
.

11: P(k+1) ←M(k)Σ̃(k)N(k)>, where Σ̃
(k)
ii ← max{0,Σ(k)

ii −
β
2ρ}, ∀i.

12: Q(k+1) ← Q̂(k) + P(k+1) −UW(k).

13: ak+1 ←
1+
√

4a2k+1

2 .
14: k ← k + 1.
15: until Convergence

To evaluate the convergence ability of Algorithm 1, we conduct experiment on one synthetic dataset and two real-world
datasets, FOX and NUS-Object. In this experiment, we randomly select 30%, 30%, 20% and 20% of total samples as labeled
training set, unlabeled training set, validation set and testing set, respectively, and set the parameters of AGILE as α = β = γ =
1. We terminate Algorithm 1 once the relative change of its objective is below 10−5. Figure 1 shows the convergence curves of
the objective function value by Algorithm 1. Figure 1 shows that the objective function value converges within 400 iterations,
demonstrating the efficiency of the proposed algorithm.
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Figure 1: Convergence analysis of Algorithm 1 (α = β = γ = 1) on one synthetic dataset and two real-world datasets. The
algorithm converged at the 48th, 115th and 361st iteration on the synthetic data, FOX, and NUS-Object, respectively. The 1st
row shows the original objective value, while the 2nd row shows the objective value in the logarithmic scale. In each sub-
figure, Funval and Loss denote the objective value and value of loss function, respectively, and R1, R2 and R3 denote the values
of three regularization terms.
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Figure 2: CD diagrams (0.05 significance level) of seven comparing methods in two evaluation metrics. The performance of
two methods is regarded as significantly different if their average ranks differ by at least the Critical Difference (CD).

Data preparation for Section: Experiments
To compare the performances of multi-task multi-view learning methods, we conduct experiments on the following four real-
world dual-heterogeneous datasets.

• FOX: The datasetrefers to the FOX web news classification [Qian and Zhai, 2014] with 4 categories (tasks): health, sports,
science/technology and travel, where each article (instance) has 2 views: text view and image view. Titles, abstracts and
text body contents in one article (instance) are extracted as the text view, while the associated images are processed as
the image view, consisting of seven groups of color features. The text features are stored in `2-normalized TFIDF vector
representation, and the image features concatenate 7 groups of color features.

• Mirflickr: The Mirflickr datasetcollects 25,000 Flickr images from Mar. 2007 to Jun. 2008 for image annotation [Huiskes
and Lew, 2008]. Here, we treat the 15 relevant class labels as the ground truth categories (tasks) of images, such as
clouds, sea, flower, dog, car and people. Each image (instance) is represented by two types (views) of features: image edge
histogram and image homogeneous texture.

• NUS-Object: This datasetis an object image dataset extracted from the NUS-WIDE dataset [Chua et al., July 8 10 2009] for
web image annotation and retrieval. Images (instances) are annotated by 31 class labels (tasks), like book, car, computer,
flower, horse, train, plane, etc, and each image is represented by 5 types (views) of low-level features, including 64-D color
histogram, 144-D color correlation, 73-D edge direction histogram, 128-D wavelet texture and 225-D block-wise color
moments.

• NUS-Scene: This datasetis a scene image dataset of the NUS-WIDE dataset [Chua et al., July 8 10 2009] for web im-
age annotation and retrieval. Images (instances) can be associated with 33 class labels (tasks), such as beach, building,
airport, forest, moon, sky and road. Similar with NUS-Object, each image in the NUS-Scene dataset is represented by 5
types (views) of low-level features: 64-D color histogram, 144-D color correlation, 73-D edge direction histogram, 128-D
wavelet texture and 225-D block-wise color moments.

As a preprocessing for the above datasets, we filter out the text features represented by `2-normalized TFIDF vector repre-
sentation, whose frequency is less than 1%. In addition, we eliminate the features with constant values, and remove the samples
with no associated categorization. Moreover, we discard the tasks with a relatively small number of positive instances, for
example, in the Mirflickr dataset, 7 tasks are discarded as the percentage of positive instances is less than 5%, leading to a
MVMTL problem with 8 tasks.

Statistical test for Section: Experiments
To perform statistical test on experimental results in Table 2 of the main paper, we apply Nemenyi test [Demšar, 2006], which
allows to statistically evaluate the performance between every two methods. In Nemenyi test, the performance of two methods
is regarded as significantly different if their average ranks differ by at least the critical difference (CD). Fig. 2 shows the CD
diagrams for four evaluation metrics at 0.05 significance level. In each subfigure, the CD is given above the axis, where the
averaged rank is marked. In Fig. 2, algorithms which are not significantly different are connected by a thick line. In terms of
AUC, AGILE achieved statistically comparable performances with CSL-MVMT and rMTFL, and statistically superior perfor-
mances than Elastic-Net, coMVL, MFM and IteM2. In Accuracy, AGILE ranked 1st among seven comparing methods, and
statistically outperformed IteM2. On average, the robust multi-task learning method, rMTFL, performed second best. This is
probably because the real-world datasets indeed exhibit tasks/views outliers, and two robust methods, AGILE and rMTFL, can
successfully cope with this setting.
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