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Abstract

Motivation: Predicting side effects of drug–drug interactions (DDIs) is an important task in pharmacology. The state-
of-the-art methods for DDI prediction use hypergraph neural networks to learn latent representations of drugs and
side effects to express high-order relationships among two interacting drugs and a side effect. The idea of these
methods is that each side effect is caused by a unique combination of latent features of the corresponding interact-
ing drugs. However, in reality, a side effect might have multiple, different mechanisms that cannot be represented
by a single combination of latent features of drugs. Moreover, DDI data are sparse, suggesting that using a sparsity
regularization would help to learn better latent representations to improve prediction performances.

Results: We propose SPARSE, which encodes the DDI hypergraph and drug features to latent spaces to learn
multiple types of combinations of latent features of drugs and side effects, controlling the model sparsity by a sparse
prior. Our extensive experiments using both synthetic and three real-world DDI datasets showed the clear predictive
performance advantage of SPARSE over cutting-edge competing methods. Also, latent feature analysis over un-
known top predictions by SPARSE demonstrated the interpretability advantage contributed by the model sparsity.

Availability and implementation: Code and data can be accessed at https://github.com/anhnda/SPARSE.

Contact: ducanh@kuicr.kyoto-u.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A drug-drug interaction (DDI) is a reaction between two drugs, where-
by the effects of one drug are modified by the concomitant use of the
second drug. A DDI might cause side effects, which are unwanted
effects and are responsible for significant patient morbidity and mortal-
ity (Magro et al., 2012). Hence, predicting side effects of a DDI, i.e.
DDI prediction, is a very important task to guarantee drug safety.

Using machine learning has emerged as a prominent approach
for DDI prediction, making the prediction fast and highly accurate
(Xu et al., 2019; Zitnik et al., 2018). The traditional machine learn-
ing methods such as support-vector machines (Kastrin et al., 2018),
logistic regression (Mei and Zhang, 2021) or feedforward neural
networks (Wang et al., 2019) use predefined drug features to predict
side effects as labels. However, DDI data have more information.
Particularly, DDIs can be represented by a graph, called a DDI
graph, where nodes are drugs and edges are interacting drugs. The
DDI graph can be learned with graph neural networks (Zitnik et al.,
2018). Nonetheless, DDI graphs are only limited to pairwise rela-
tionships of drug pairs while there still exist many side effects, which
can be represented by other relationships, such as co-occurrence.
Then, a state-of-the-art generalization of a DDI graph can be a DDI
hypergraph, which can capture higher-order relationships, where
drugs and side effects are both nodes, and each hyperedge is a triple
of a side effect with two interacting drugs.

On the DDI hypergraph, hypergraph neural networks can be
applied to learn the representations of drugs and side effects al-
together. In DDIs, two drugs with totally different properties can
still interact with each other, hence the traditional hypergraph neur-
al networks using similarity assumption on node representations are
not suitable (Feng et al., 2019). Instead, CentSmoothie, a current
cutting-edge hypergraph neural network for DDIs (Nguyen et al.,
2021), assumes that each side effect is caused by a unique combin-
ation of latent features of the corresponding interacting drugs.
However, in real life, each side effect might have many different
mechanisms (Suleyman et al., 2010) that cannot be reflected in a sin-
gle combination of drug latent features. Hence, it is necessary to
learn different types of combinations of drug latent features for each
side effect. This is the first problem (P1), which we address in this
article.

To solve P1, we borrow one idea of stochastic block models
(SBMs) on hypergraphs such that each node (e.g. drug or side effect)
has one or several latent features (Anandkumar et al., 2013; Pal and
Zhu, 2021) and there exist interactions (associations) of latent fea-
tures. This method can learn different types of combinations of drug
latent features for each side effect, at once. In addition, to improve
the quality of learned latent features, input node features also can be
used (Zhang et al., 2019). However, transformations from input
node features and node relationships in the hypergraphs to latent
features might be complex and, especially, non-linear. This is the
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second problem (P2), which has not been addressed in existing
SBMs and we address in this article.

Moreover, DDI data are sparse (e.g. in the largest DDI dataset,
97.6% of all triples of drug–drug-side effects are not a DDI), sug-
gesting that the model for learning DDIs also should be sparse.
However, recent work on DDIs has not used this sparsity of the data
(Nguyen et al., 2021; Zitnik et al., 2018), which might potentially
impair model performance. This is the third problem (P3), which we
address in this article.

We propose SPARSE, a new model for DDI prediction, to solve
the above three problems. For P1, we assume that there exist drug
and side effect latent features with latent interactions so that each
side effect latent feature interacts with several pairs of drug latent
features. For P2, we encode drug features and the DDI hypergraph
altogether in the latent representations using a suitable hypergraph
neural network. For P3, we guide the model to preserve the sparsity
of the data using a suitable sparsity control. Figure 1 schematically
illustrates these ideas of our model. That is, the model consists of
two parts: (i) an encoder and (ii) a decoder. The encoder encodes the
input of the DDI hypergraph (e.g. three hyperedges in Fig. 1) with
drug features into latent spaces of drug and side effect latent repre-
sentations, and interactions of latent features. The decoder recon-
structs from the latent spaces the DDI hypergraph with new DDI
predictions (e.g. the dotted hyperedge in Fig. 1). Finally, a sparsity
prior (horseshoe priors in our model) is used to control the sparsity
of the latent interactions.

Our extensive experiments first validated the advantage of
SPARSE in terms of prediction performance by using both synthetic
and real-world datasets. Throughout all experiments on prediction
performance, SPARSE achieved better prediction performances than
competing methods, such as CentSmoothie and SBM. For example,
in the experiment of using the largest real DDI dataset, called
TWOSIDES, SPARSE achieved area under the ROC curve (AUC) of
0.9524 and (area under the precision-recall curve (AUPR) of 0.882,
while CentSmoothie achieved AUC of 0.9348 and AUPR of 0.8749
and SBM achieved AUC of 0.9337 and AUPR of 0.8583. Similarly
when using JADERDDI, another DDI dataset, SPARSE achieved
AUC of 0.9698 and AUPR of 0.7348, while CentSmoothie was
AUC of 0.9684 and AUPR of 0.6044 and SBM was AUC of 0.9428
and AUPR of 0.5963.

We then examined the top prediction obtained by SPARSE,
which is trained by using the whole TWOSIDES. That is, we
checked the number of overlaps between the top 400 predictions by
one method and DDIs in drugs.com (Drugs.com, 2021; Thelwall
et al., 2017), which is a commonly used online web checker for
DDI. We found 98 DDIs in drugs.com out of the top 400

predictions, while by using the same procedure, CentSmoothie
found only 71 DDIs out of the top 400 predictions, implying that
SPARSE can find new DDIs more than competing methods.

Finally, we validated the prediction results by characterizing the
top predictions obtained by SPARSE. In more detail, we checked the
biological properties, such as target proteins, of the top 10 triples of
drug–drug-side effect, predicted by SPARSE, by using latent features
connected to these top 10 predictions. We then found that top pre-
dictions can be associated with some biological mechanisms and
particularly with responsible proteins/pathways. These results indi-
cate that our model, SPARSE, can provide high predictive perform-
ances as well as latent biological knowledge beneficial to understand
the background behind predicted DDIs.

2 Related work

Machine-learning models for DDI prediction can be divided into
non-graph-based and graph-based ones. For non-graph-based mod-
els, the inputs are the predefined feature vectors of pairs of drugs,
the outputs are the corresponding side effects, and the models are
multi-label classifiers, e.g. support-vector machines (Kastrin et al.,
2018) or a multilayer feedforward neural network (Wang et al.,
2019). Instead of only using predefined drug feature vectors, graph-
based methods for DDI use graph neural networks to learn new la-
tent representations of drugs from molecular graphs or DDI graphs.
In molecular graphs, each drug is considered as a graph that nodes
are atoms and edges are connections of atoms (Harada et al., 2020;
Xu et al., 2019). In DDI graphs, DDIs are considered as pairwise
relationships and formulated in the form of a graph where nodes are
drugs and edges are drug interactions with side effects as labels
(Zitnik et al., 2018). The latter one has shown to be more effective
for DDI prediction since it can use both pharmacological informa-
tion and biological information rather than only molecular graphs
(Zitnik et al., 2018).

However, one drawback of using graph neural networks on DDI
graphs is that it does not use multiple relationships (labels) at the
same time. Side effects themselves have relationships with each
other, e.g. co-occurrences. Existing work often fixes them as one-
hot vectors to indicate the presence of the side effects. This represen-
tation considers side effects independently, potentially making the
models under-utilize the side effect relationships.

Hypergraph neural networks on DDI overcome the above draw-
back by learning representations of drug and side effect nodes al-
together in latent spaces (Nguyen et al., 2021). DDI is considered as
high-order relationships of drug–drug-side effects in the form of a

Fig. 1. A schematic illustration of the procedure in the proposed model, SPARSE
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hypergraph where nodes are both drugs and side effects, and each
hyperedge is a triple of two interacting drugs and a side effect caused
by the drugs. There are two types of hypergraph neural networks
models on the DDI: similarity based and non-similarity based. The
similarity-based models, e.g. traditional spectral-based hypergraph
neural networks, assume that interacting drugs should have similar
representations (Fan et al., 2021; Feng et al., 2019). However, in
DDI, two interacting drugs are not necessarily similar. For non-
similarity models, the current state-of-the-art method is
CentSmoothie (Nguyen et al., 2021) that assumes that the represen-
tation of a side effect can be represented by a combination of latent
features of two drugs causing the side effect. However,
CentSmoothie cannot deal with multiple combinations of latent fea-
tures at the same time.

In order to deal with multiple combinations of latent features,
one possible approach is to use the idea of SBMs, which can be
applied to hypergraphs, with each node belonging to several latent
features (groups) and associations of latent features (groups)
(Anandkumar et al., 2013). However this has not been applied to
DDI hypergraphs, and more importantly, SBM is based on linear as-
sumption, while DDI can be generated through more complex rela-
tions to be represented by non-linearity.

Many studies have shown the benefits of sparsity regularization,
which is a commonly used method to achieve sparsity of models, es-
pecially on noisy and sparse data (Carvalho et al., 2009; Tibshirani,
1996). In a Bayesian viewpoint, sparsity regularization can be
understood as a result of using sparse prior distributions. A state-of-
the-art method for sparsity regularization is to use horseshoe priors
(Carvalho et al., 2009; Piironen and Vehtari, 2017). It shows an ad-
vantage in comparison with traditional Laplace prior (Lasso regular-
ization) (Tibshirani, 1996) in that the horseshoe prior allows to
shrink in both directions: no shrinkage for important features and
complete shrinkage for non-important (noise) features. A compar-
able shrinkage prior with the horseshoe prior is the spike-and-slab
prior (Hoeting et al., 1999). However, the spike-and-slab prior is a
discrete prior that requires the Markov chain Monte Carlo sampling
for optimization, which is not effective for large-scale datasets like
DDI.

3 Materials and methods

3.1 Background
We recall definitions for horseshoe priors and n-mode tensor prod-
uct for 3D tensors, which will be used later.

3.1.1 Horseshoe priors

We summarize the horseshoe prior (Carvalho et al., 2009), a state-
of-the-art prior for sparsity control, for a non-negative 3D tensor:
B ¼ fBi;j;kg 2 R

K1�K2�K3

0þ . The idea of the horseshoe prior is that
each Bi;j;k follows a normal distribution with the same zero mean
and a different variance. Each variance has two parts: one is a global
parameter sharing among all variances to decide the sparsity of B
and one is a local parameter to decide the magnitude of each vari-
ance by using a heavy tail distribution with the half-Cauchy distribu-
tion. In more detail:

Bi;j;k � Nð0; s2K2
i;j;kÞ; (1)

Ki;j;k � Cþð0; 1Þ; (2)

where s is a global parameter for sparsity, and Cþð0;1Þ is a half-
Cauchy distribution defined by: pðKi;j;kÞ ¼ 2

p
1

1þK2
i;j;k

for Ki;j;k � 0.

Both the horseshoe prior and Laplace prior (for Lasso regulariza-
tion) are shrinkage priors such that by using priors, values of fea-
tures tend to be shrunk (Piironen and Vehtari, 2017). Let B̂ i;j;k be
the optimal values without priors, then the optimal values having
priors has the form: B i;j;k ¼ ð1� ji;j;kÞB̂ i;j;k, where 0 � ji;j;k � 1 is
a shrinkage factor depending on the priors. With Laplace prior
(Lasso regularization), the density of ji;j;k tends to be a constant

near 1 and disappears near 0, meaning that it always shrinks all fea-
tures, containing important ones. In contrast, the density of ji;j;k

with the horseshoe prior has two peaks at 0 and 1, meaning that the
horseshoe prior allows two kinds of shrinkage: no shrinkage to
maintain important features and complete shrinkage to remove un-
important features.

3.1.2 N-mode tensor product

The n-mode tensor product can be understood as a generalization of
the matrix dot product in high-dimension that the product is proc-
essed at the nth dimension. Considering in the 3D space with a ten-
sor: B 2 R

K1�K2�K3 and a matrix H 2 R
T�Kn ; n 2 f1; 2; 3g, the n-

mode product of B and H is denoted by B�nH and is defined for
each of n¼1, 2 and 3, as follows:

ðB�1HÞt;j;k ¼
XK1

i¼1

Bi;j;kHt;ijt ¼ 1 . . .T; j ¼ 1 . . .K2; k ¼ 1 . . .K3; (3)

ðB�2HÞi;t;k ¼
XK2

j¼1

Bi;j;kHt;jjt ¼ 1 . . .T; i ¼ 1 . . .K1; k ¼ 1 . . .K3; (4)

ðB�3HÞi;j;t ¼
XK3

k¼1

Bi;j;kHt;kjt ¼ 1 . . .T; i ¼ 1 . . .K1; j ¼ 1 . . .K2: (5)

3.2 Problem formulation: DDI prediction
We formulate the DDI prediction problem as follows.

Input: Given a DDI hypergraph: G ¼ ðV;EÞ;V ¼ VD [ VS;
E � VD �VD � VS, where VD is a set of drug nodes, VS is a set of
side effect nodes (given u; v 2 VD; t 2 VS, two triples (u, v, t) and

(v, u, t) are the same). The drug node features are FD 2 R
jVD j�K0

0þ and

the side effect node features are one-hot vectors: FS 2 R
jVS j�jVS j
0þ :

Output: For e ¼ ðu; v; tÞ 2 VD �VD � VS, calculate a prediction
score for interaction m(e).

3.3 Proposed model
We propose SPARSE: a sparse model for learning multiple types of
latent combinations of side effects and drugs to predict DDIs. Our
model follows an auto-encoder framework with two parts: an en-
coder and a decoder. The encoder encodes the DDI hypergraph with
drug node features to latent spaces with latent representations of
drugs and side effects (H), and interactions of latent features (B).
The decoder aims to reconstruct the DDI hypergraph with new pre-
dicted hyperedges from H and B. In the following parts, we first pre-
sent our latent interaction assumption with sparsity for the
interactions of drugs and side effects, and then we describe the en-
coder and decoder.

3.3.1 Latent interaction assumption

To model DDIs, we suppose that there exist latent spaces with drug
latent features and side effect latent features where DDIs occur. The
latent interaction assumption is that two interacting drugs cause a
side effect if there exist a pair of drug latent features of the two
drugs that interact with a latent feature of the side effect.

In detail, the formulation for the latent interaction assumption
can be described as follows. Let LD ¼ f1; . . . ;KDg and LS ¼
f1; . . . ;KSg be the sets of indices of latent features of drugs and side
effect with KD and KS be the numbers of latent features. Let B 2
R

KD�KD�KS

0þ be a 3D tensor representing interactions of latent features
of drugs and side effects. The set of interacting latent features is:
A ¼ fði; j; kÞ 2 LD � LD � LSjBi;j;k > 0g.

Considering a triple of two drugs and one side effect
e ¼ ðu; v; tÞ 2 VD � VD � VS. Let hdðuÞ;hdðvÞ 2 R

KD

0þ ; hsðtÞ 2 R
KS

0þ be
the vectors representing the presence of latent features of the two drugs
and the side effect, respectively. Let gu ¼ fi 2 LDjhdðuÞi > 0g; gv ¼
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fi 2 LDjhdðvÞi > 0g and gt ¼ fi 2 LSjhsðtÞi > 0g be the sets of latent
features of u, v and t, respectively.

Under the latent interaction assumption, u interacts with v to
cause t if:

gu � gv � gt \ A 6¼1; (6)

or with tensor product formulation:

B�1hdðuÞ�2hdðvÞ�3hsðtÞ > 0: (7)

In practice, we can change the value 0 on the right side of
Equation (7) to a positive threshold. Equation (6) will be used to
generate synthetic data in the experimental section. Equation (7)
will be used in the decoder of the model.

Sparsity property
We first define formulations for sparsity measures of the DDI

data and the latent interactions using the percentages of non-
interactions. Let sd be the sparsity of the hypergraph G:

sd ¼ 1� 2jEj
jVDjðjVDj � 1ÞjVSj

: (8)

The sparsity of the latent interactions sl is defined as the percent-
age of the number of non-interacting triples of the latent features per
the total number of all triples of the latent features.

sl ¼ 1� 2jAj
jLDj2jLSj

: (9)

DDI data are sparse as per statistics in Table 1. It is shown that
97.6% and 99.87% of all triples are non-interacting in TWOSIDES
and JADERDDI, respectively.

The motivation for us to use sparse models is that sparse models,
according to statistical learning theory, are usually more reliable
models if they could fit the training data well (Hastie, 2015). As our
sparse models have sparse interactions among latent features, we
will prove that they tend to generate sparse data and are suitable for
DDI data. We show a relationship between sparsity of the models
and sparsity of data generated by the models, which are the ones
that best fit the models, as follows.

Property 1:Assume that the DDI data are generated from the true gener-

ation model according to formula (7). Assuming that each drug and side

effect has exactly nu and nt non-zero latent features, respectively. Then,

there exists a relationship between the sparsity of the model and the

expected sparsity of the generated data as follows:

EðsdÞ ¼ 1� ð1� slÞ
n2

unt

K2
DKS

: (10)

Proof:

For a pair of drug u, v to cause side effect t, then

B�1h
dðuÞ�2h

dðvÞ�3h
sðtÞ > 0: This means that there is at least one non-

zero entry of B corresponding to latent features of u, v and t. Since there

are exactly n2
unt possible entries of B corresponding latent features of u,

v and t, then the probability of a uniform sampling of entries of B to

corresponding to these latent features is p1 ¼ n2
unt

K2
D

KS
. This is the probability

of having an interaction among the features (that generates a side effect

data point).

Since entries of B are assumed to be randomly sampled according to a

uniform distribution, the number of interactions when B have jBj0 ¼
ð1� slÞK2

DKS non-zero entries follows a binomial distribution

BinomialðjBj0; p1Þ.
With the assumption that the hypergraph is generated from this

generative process, the expected number of non-zero data points
(the number of hyperedges) becomes jBj0:p1 ¼ ð1� slÞ:n2

unt.
The expected sparsity of the hypergraph becomes
EðsdÞ ¼ 1� ð1�slÞn2

unt

K2
D

KS
¼ 1� ð1� slÞp1.

This result leads to EðsdÞ > slp1. It shows a relationship between
the sparsity of the model (sl) and the expected sparsity of the data
generated by the model (EðsdÞ). It shows that the model can be
sparse but cannot be as sparse as we want. It can be a hint on setting
sparsity of the model in learning processes.

3.3.2 Encoder

For the encoder, we use a hypergraph neural network with message
passing (Yadati, 2020) to encode the input hypergraph and node
features into latent spaces with node latent representations H and la-
tent interactions B (for simplicity, B can be considered as a free par-
ameter to learn).

H ¼ ðHd;HsÞ ¼ gw0
ðG; FÞ 2 R

jVD j�KD

0þ � R
jVS j�KS

0þ ; (11)

B ¼ fw1
ðG;FÞ 2 R

KD�KD�KS

0þ ; (12)

where gw0
and fw1

are hypergraph neural networks based on mes-
sage passing (Yadati, 2020) with parameters to learn w0, w1, Hd ¼
fhdðuÞ 2 R

KD

0þju 2 VDg (node representations of drugs) and Hs ¼
fhsðtÞ 2 R

KS

0þjt 2 VSg (node representations of side effects). The for-
mulation of each message passing layer has the following form:

hðlþ1ÞðaÞ ¼ r
�
T
�

MðlÞ
�

a;hðlÞðaÞ; ðb; hðlÞðaÞÞ
n o

b2e

�� �
e2Na

��
; (13)

where hðlÞðaÞ is the representation of node a 2 VD [ VS at layer (l), r
is an activation function, T is an aggregation function (e.g. an aver-
age function), Na ¼ fe 2 Eja 2 eg and MðlÞ is a message passing
function at layer (l) to pass information from neighbor nodes in
hyperedge e to a:

MðlÞ
�

a;hðlÞðaÞ; fðb;hðlÞðbÞÞgb2e

�
¼ (14)

X
b2e

MðlÞðcðaÞ; cðbÞ;hðlÞðaÞ; hðlÞðbÞÞ; (15)

where MðlÞ is a two-layer feedforward neural network, cðbÞ ¼
1 if b 2 VD and cðbÞ ¼ �1 if b 2 VS are the node types.

3.3.3 Decoder

The reconstruction of the hypergraph is from the latent interaction
assumption. The likelihood to reconstruct each triple e ¼ ðu; v; tÞ 2
VD � VD � VE follows a Gaussian distribution:

pðejB;HÞ ¼ 1

r
ffiffiffiffiffiffi
2p
p exp �1

2

iðeÞ �mw0 ;w1
ðeÞÞ

r

� �2
 !

; (16)

where iðeÞ ¼ 1 if e 2 E, i(e) ¼ 0 if e 2 E ¼ VD � VD � VS=E, and
mw0 ;w1

ðeÞ is the mean value for the latent interaction of e:

Table 1. Statistics of three real datasets

Dataset No. of

Drugs

No. of Side

effects

No. of Drug–drug

pairs

No. of Drug–drug-side effects

(DDIs)

Avg. no. of side effects/No. ofdrug–drug

pairs

Sparsity

(%)

TWOSIDES 557 964 49,677 3 606 046 72.58 97.6

CADDDI 587 969 21,918 373 976 17.06 99.77

JADERDDI 545 922 36,929 222 081 6.01 99.83
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mw0 ;w1
ðeÞ ¼ B�1hdðuÞ�2hdðvÞ�3hsðtÞ: (17)

Equation (17) is also the score for the interactions of triples (u, v,
t) used for prediction. The likelihood for the decoder is:

pðGjB;HÞ ¼
Y

e¼ðu;v;tÞ2VD�VD�VE

pðejB;HÞ: (18)

3.3.4 Objective function

The objective function for our method is to maximize a posterior of
the model. The objective function consists of two parts: one for log-
likelihood of the model and one for the prior for sparsity control.
Let K 2 R

KD�KD�KS

0þ be the horseshoe prior parameter for B and s be
the hyperparameter for the global sparsity of the horseshoe prior.
We have the following objective function:

argmax
B;H;K�0

log pðGjB;HÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
log likelihood

þ log pðBjK; sÞ þ log pðKÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
log of horseshoe prior

; (19)

where log pðGjB;HÞ is the log-likelihood of Equation (18) with H in
Equation (11) and B in Equation (12), and log pðBjK; sÞ þ log pðKÞ
is the logarithm of the horseshoe prior:

log pðBjK; sÞ ¼
X�1

2

Bi;j;k

sKi;j;k

 !2

þ
X

log K�1
i;j;k þ const; (20)

log pðKÞ ¼
X

log
1

1þ K2
i;k;j

: (21)

We then use stochastic gradient descent libraries in the PyTorch
framework for optimizing Equation (19).

We also consider two other variants of SPARSE: SPARSEO for not
using any sparsity prior and SPARSEL for using Laplace prior (Lasso
regularization), to examine the effect of using the horseshoe prior.

4 Experimental results

We validated SPARSE in two scenarios: synthetic data and real data.
On the synthetic data, assuming that the data are generated from the
latent interactions, we examined if SPARSE can recover the latent
interactions under changing hyperparameters of data: the number of
latent features, sparsity and amount of noise. On real data, we
checked the prediction performance of SPARSE in comparison with
state-of-the-art DDI prediction methods by using three real-world
DDI datasets. Additionally, we evaluated if the top unknown predic-
tions by SPARSE can be related to biological phenomena like func-
tions and mechanisms.

For all experiments, we used 20-fold cross-validation by dividing
hyperedges into 20-folds, keeping the same number of hyperedges
(side effects) in each fold. We reported the mean and standard devi-
ation of the two commonly used measures AUC and AUPR. Also, all
reported results were the highest performances through grid searches
of hyperparameters. There were three hyperparameters for grid
searches for SPARSE: (i) latent feature sizes. The tested values were
30, 40, 50 and 60. We set the same size for all layers. (ii) Global
sparsity s. The tested values were 0.01, 0.02, 0.03, 0.05 and 0.1 and
(iii) the numbers of neural layers. The tested values were 1, 2 and 3.
The hyperparameter values obtained were 50 for the latent feature
size, s ¼ 0:02 for TWOSIDES and s ¼ 0:01 for CADDDI and
JADERDDI, and the number of neural layers was 2. All experiments
were run in a computer with Intel Core I7-9700 CPU, 8 GB GeForce
RTX 2080 GPU and 32 GB RAM.

4.1 Synthetic data
4.1.1 Data generation

The generation process for synthetic data consists of two steps:
(i) generating latent interactions and (ii) generating triples of interact-
ing drug–drug-side effects from the latent interactions, as follows.

1. Generating latent interactions. Given sets of indices of drug la-

tent features: LD ¼ f1; 2; . . . ;KDg and side effect latent features:

LS ¼ f1; 2; . . . ;KSg.
a. Initialize a set of latent interactions A ¼1.

b. For each k 2 LS:

1. Sample the number of drug latent feature pairs:

nk ¼ RandomIntegerðMÞ, where M is the maximum

number of pairs.

2. Sample nk pairs ði; jÞ 2 LD � LD. For each pair (i, j):

A ¼ A [ fði; j;kÞg.
2. Generating drug interactions:

a. Generate drug and side effect latent features. Assume that

there are VD drugs and VS side effects.

1. For each drug u 2 VD:

i. Sample the number of drug latent features:

nu ¼ RandomInterðN1Þ, where N1 is the maximum

number of drug latent features.

ii. Sample gu � LD; jguj ¼ nu. For drug feature vectors F:

mu 2 R
KD�c
0þ ; mu  0; mu½i� ¼ 1 if bi=cc 2 gu;

fu ¼ Gaussianðmu; dÞ. F ¼ F [ fu.

2. For each side effect t 2 VS, sample the number of side ef-

fect latent feature nt ¼ RandomInterðN2Þ and Sample

gt � LS; jgtj ¼ nt.

b. Generating true triples E	. Initialize E	 !1. For

ðu; v; tÞ 2 VD � VD � VS, if gu � gv � gt \ A! ¼1 then (u, v,

t) is a true triple: E	 ¼ E	 [ ðu; v; tÞ.
c. Adding noise:

1. For each e 2 E	, replace e by a random sample e0 2 E	 ¼
VD � VD � VS=E

	 with probability r. The final set of tri-

ples of drug–drug-side effects is E.

Finally, we have a synthetic dataset with triples of drug–drug-
side effects E and drug feature vectors F.

4.1.2 Experiments

The synthetic data has five hyperparameters: the number of drugs,
the number of side effects, the number of latent interactions, data
sparsity and the amount of noise (noise rate). We evaluated our
methods by changing one hyperparameter, fixing the other four.
The hyperparameters changed are (i) number of latent features, (ii)
data sparsity and (iii) noise rate.

1) Changing the number of latent features.
Setting: VD ¼ 400; VS ¼ 300, noise rate r¼0.01. We changed KD ¼
KS 2 f5;10;20; 30; 40; 50g. For each (KD, KS), we selected N1, N2

and M such that the sparsity of the generated data is kept at 0.98.
Compared methods: We compared four methods: SPARSEO (no

sparsity control), CentSmoothie (Nguyen et al., 2021), a similarity-
based hypergraph neural network, HPNN (Feng et al., 2019) and
SBM on hypergraph (Anandkumar et al., 2013).

Results: Figure 2a shows the results, where SPARSEO achieved
the highest performances among the compared methods in all cases.
We had the following two findings:

1. For the small number of latent features, the performance of

CentSmoothie was close to SPARSEO (both AUC and AUPR

were around 0.99 under KD ¼ KS ¼ 5). However, by increasing

the number of latent features, the performance gap between

SPARSEO and CentSmoothie also increased (gaps in AUC and

AUPR were around 0.01 and 0.03, respectively, when

KD ¼ KS ¼ 50). This result implies that CentSmoothie was un-

able to distinguish latent interactions clearly for a large number

of latent interactions, while SPARSEO worked better for captur-

ing multiple latent interactions.

SPARSE i337 D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/Supplem
ent_1/i333/6617516 by Library,Facultry of Agriculture/G

raduate School of Agriculture,Kyoto U
niversity user on 22 July 2022



2. The performances of SBM were lower than both CentSmoothie

and SPARSEO, since SBM did not use the node features, which

decreased the performance. HPNN, a similarity-based hyper-

graph neural network, had the lowest performance since the two

drugs of a DDI do not necessarily have similarity in the data gen-

erated from latent interactions. Overall, these results indicated

that SPARSEO can recover the latent interactions better than the

other methods.

2) Changing data sparsity.
Setting: VD ¼ 400;VS ¼ 300; KD ¼ KS ¼ 50; N1 ¼ N2 ¼ 4 and
r ¼ 0:01. We changed M in f50;40; 30;20; 10; 5g, resulting in data
sparsity in f0:6;0:75;0:88; 0:92; 0:95;0:98g, respectively.

Compared methods: Since in the previous experiment, SPARSEO

outperformed the compared methods already, we compared
SPARSE and two variants SPARSEL and SPARSEO (please see the
end of Section 3.3.4) to check the effect of sparse priors.

Results: Figure 2b shows the results, where SPARSE achieved the
highest performance, followed by SPARSEL and SPARSEO. In par-
ticular, the performance advantage by SPARSE using sparsity con-
trol was clearer with higher sparsity. These results indicate that the
horseshoe prior is suitable for learning sparse data.

3) Changing the amount of noise.
Setting: VD ¼ 400;VS ¼ 300; KD ¼ KS ¼ 50; N1 ¼ N2 ¼ 4, M¼1
(keeping the data sparsity of 0.98). We changed noise r in
½0;0:01; 0:05; 0:10; 0:20�.

Compared methods: We again compared SPARSE with two var-
iants SPARSEL and SPARSEO to examine the effectiveness of the
sparse priors to deal with noise.

Results: Figure 2c shows the results, where again SPARSE
achieved the highest performances among the three methods for all
different amounts of noise. When there are no noises, the performan-
ces of the three methods were very close to each other. However, as
the amount of noise is increased, the advantage of SPARSE over the
other two methods became clearer. For example, when the amount of
noise is 20%, the gap between SPARSE and SPARSEL reached around
0.07, and the gap between SPARSE and SPARSEO was around 0.1.

These results suggest that the horseshoe prior could deal with noise
better than the Laplace prior and the case with no sparsity prior.

4.2 Real data
4.2.1 Data description

We used three real-world datasets for DDI, namely TWOSIDES
(Tatonetti et al., 2012), CADDDI and JADERDDI. To our know-
ledge, TWOSIDES is the largest benchmark dataset for DDI. The
other two datasets, i.e. CADDDI and JADERDDI, were generated
from Canada Vigilance Adverse Reaction Reports and Japanese
Adverse Drug Event Reports, respectively, in the same manner as
the way that TWOSIDES was generated from the adverse events
reported to US Food and Drug Administration (Nguyen et al.,
2021). For all datasets, we only chose small molecular drugs, which
can be found in DrugBank. Also, we focused drugs appearing in
more than five interactions (hyperedges) in each dataset. For each
drug, we used a feature (binary) vector, with the size of 2329, con-
sisting of 881 substructures and 1448 interacting proteins. Table 1
shows a summary statistics of the three real benchmark datasets,
TWOSIDES, CADDDI and JADERDDI.

4.2.2 Predictive performance experiments

Compared methods: For our method, we used SPARSE and two var-
iants SPARSEO and SPARSEL. We further used five methods as com-
peting methods against SPARSE. These competing methods were
CentSmoothie (Nguyen et al., 2021), the traditional similarity-based
hypergraph neural network (HPNN) (Feng et al., 2019), two DDI
graph-based graph neural networks: Decagon (Zitnik et al., 2018)
and SpecConv (Kipf and Welling, 2016) and, a molecular graph-
based graph neural network, MRGNN (Xu et al., 2019). Decagon
and CentSmoothie provide available codes, and we ran them with
the recommended settings. For MLNN, MGRNN, SpecConv,
HPNN and SBM, we implemented them and did a grid search for
finding the best hyperparameter values.

Results—Cross-validation predictive performance: Table 2
shows AUC and AUPR results of all competing methods. From this
table, SPARSE and two variants (SPARSEL and SPARSEO) achieved
the highest performances, followed by CentSmoothie, SBM and

Fig. 2. Performances on synthetic data, when changing (a) #latent features, (b) sparsity and (c) amount of noise

Table 2. Comparison of performances of the methods on the real DDI datasets

Method TWOSIDES CADDDI JADERDDI

AUC AUPR AUC AUPR AUC AUPR

MRGNN 0.8452 6 0.0036 0.8029 6 0.0039 0.9226 6 0.0015 0.7113 6 0.0031 0.9049 6 0.0009 0.3698 6 0.0019

Decagon 0.8639 6 0.0029 0.8094 6 0.0024 0.9132 6 0.0014 0.6338 6 0.0029 0.9099 6 0.0012 0.4710 6 0.0027

SpecConv 0.8785 6 0.0025 0.8256 6 0.0022 0.8971 6 0.0055 0.6640 6 0.0014 0.8862 6 0.0025 0.5162 6 0.0047

HPNN 0.9044 6 0.0003 0.8410 6 0.0007 0.9495 6 0.0004 0.7020 6 0.0018 0.9127 6 0.0004 0.5198 6 0.0016

SBM 0.9337 6 0.0002 0.8583 6 0.0004 0.9588 6 0.0006 0.8170 6 0.0008 0.9428 6 0.0006 0.5963 6 0.0018

CentSmoothie 0.9348 6 0.0002 0.8749 6 0.0013 0.9846 6 0.0001 0.8230 6 0.0019 0.9684 6 0.0004 0.6044 6 0.0025

SPARSEO 0.9511 6 0.0002 0.8811 6 0.0001 0.9824 6 0.0009 0.8773 6 0.0014 0.9692 6 0.0007 0.7230 6 0.0008

SPARSEL 0.9517 6 0.0001 0.8815 6 0.0002 0.9859 6 0.0007 0.8797 6 0.0010 0.9694 6 0.0011 0.7276 6 0.0017

SPARSE 0.9524 6 0.0001 0.8820 6 0.0002 0.9837 6 0.0010 0.8843 6 0.0012 0.9698 6 0.0008 0.7348 6 0.0018
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HPNN. On the other hand, the performances of SpecConv,
Decagon and MRGNN were significantly lower. Amazingly,
SPARSEO (SPARSE without any sparsity prior) achieved still better
performance over CentSmoothie, particularly in AUPR. There was
only one case (CADDDI), where the AUC of SPARSE was slightly
smaller than that of CentSmoothie. We then ran t-test over the pre-
diction results of these two methods, to examine the significance of
the difference between CentSmoothie and SPARSE. The resultant P-
value of t-test was 0.057, indicating that the performance advantage
of CentSmoothie over SPARSE was NOT significant, under the
regular significance level of 0.05. Also, it has to be noted that AUPR
is more useful than AUC for imbalanced data (Saito and
Rehmsmeier, 2015), which can be often seen practically. We empha-
size that DDI is a typical example of this situation. In fact, the
AUPR performance gap between SPARSEO and CentSmoothie
reached around 1%, 5% and 12% in TWOSIDES, CADDDI and
JADERDDI, respectively. The performance gap in JADERDDI is es-
pecially sizable. This might be caused by the high sparsity of
JADERDDI (see Table 1).

These results suggest that the latent interaction assumption in
SPARSE is more reasonable and suitable for DDI prediction than
CentSmoothie and the other competing methods. Among SPARSE,
SPARSEL and SPARSEO, SPARSE achieved the highest perform-
ance. Note that the performance gap between SPARSE and
SPARSEL in AUPR became clearer for more sparse data: e.g. only
around 0.1% for TWOSIDES, while the gap reached around 1% for
CADDDI and JADERDDI. Hence, we can see that with more sparse
data, the horseshoe prior had advantage over Laplace prior and also
the case with no sparsity prior.

Results—Unknown DDI prediction performance: We evaluated
the predictive ability of unknown DDIs. That is, we first trained a
model by using the whole TWOSIDES data (the largest dataset),
then predicted the scores of unknown triples (drug–drug-side effect),
and finally sorted the predicted triples in the descending order of the
scores. We focused on the top 400 predictions of each method and
checked the overlap with the DDIs stored in drugs.com (Drugs.com,
2021; Thelwall et al., 2017), a commonly used web checker for
DDIs. Table 3 shows the number of overlaps between the DDIs in
drugs.com and the top 400 predictions. SPARSE found 98 over-
lapped DDIs with drugs.com, this number being the highest and fol-
lowed by CentSmoothie with 71 and HPNN with 48.

4.2.3 Case studies: interpretation of top 10 unknown predictions

SPARSE is an SBM with latent features for drugs, side effects, and inter-
actions. In particular, the model has connections between latent drug
features and latent interactions. Thus from the trained model, we can
extract the drug features, which are most associated with each drug la-
tent feature and further extract the drug features most associated with
each latent interaction through the corresponding latent drug feature.
This means that we can retrieve drug features of a DDI if we can con-
nect the DDI with the latent interactions. Algorithm 1 shows the
pseudocode of this procedure (with T¼20 in our cases). SPARSE is a
sparse model, which allows only a limited number of latent interactions
and eventually allows to extract only a limited number of drug features.
This is a sizable advantage of SPARSE for understanding the biological/
chemical background behind predicted DDIs.For case studies, we
extracted drug features (such as protein/pathway names) of the top
unknown DDI predictions by using SPARSE, which was trained by
the entire TWOSIDES. Table 4 shows the top 10 predictions (out of
the 400 predictions in the experiment of the previous section) with the
observable features associated with latent drug features [fifth column
from the right-hand side. In this column, ‘Not clear’ means that to our

current understanding of the potential DDI mechanisms, we could not
explain the corresponding low-level (molecular level) background, al-
though our algorithm could find associated drug features], the target
protein of the corresponding drug using DrugBank (sixth column) and
the corresponding reference to each DDI (seventh column). The top
predictions are likely to be similar to each other, since the similar tri-
ples are likely to have similar scores. In fact the top predictions in
Table 4 have large overlaps, but from the table, we could find the fol-
lowing four points:

1. The fourth and fifth predictions show the cases, where SPARSE

could specify target proteins precisely, confirming the high cred-

ibility of these predictions and more importantly, approving the

high ability of SPARSE for detecting unknown DDIs.

2. The first, second, third and sixth predictions show the cases,

where SPARSE could identify possible interacting protein groups

(fourth column), not necessarily directly associated with the

drugs, indicating that SPARSE allows suggesting novel interac-

tions as well as potential target proteins.

3. The validity of the seventh, eighth, ninth and tenth predictions

might be understood by high-level views, like the connection be-

tween vision and dizziness/sedation. This result implies that

SPARSE can predict probable interactions, which however can-

not be straightforwardly inferred from low-level data.

4. Entirely, we could find relevant references for all top 10 predictions

(Baldo, 2018; Fagiolini et al., 2004; Rho et al., 1997;

Venkataraman et al., 2014), giving plausibility of these prediction

and at the same time an additional layer of evidence for the useful-

ness of SPARSE in practical settings. To facilitate medical research

and confirmation of our findings by subsequent clinical or preclinic-

al studies, we provide the potential mechanisms as a Supplementary

Material for our top predictions. Also, we discuss below the main

biological mechanism for a predicted top 10 interaction:

Naratriptan, Sertraline and abnormal ECG: Sertraline belongs to

the selective serotonin reuptake inhibitor class antidepressants.

Table 3. Number of overlaps with DDIs in drugs.com for the top

400 predictions

Method #Overlaps

SPARSE 98

CentSmoothie 71

HPNN 48

Algorithm 1 Extracting potentially associated drug features

Input: Learned parameters B 2 R
KD�KD�KS

0þ ; Hd ¼ fhdðuÞg
2 R

jVD j�KD

0þ ; Hs ¼ fhsðuÞg 2 R
jVS j�KS

0þ , drug features matrix

Fd ¼ ffdðuÞg 2 R
jVD j�KO

0þ , a predicted triple (u, v, t), hyper-

parameter T

Outout: Associated drug features for the triple

//Extract drug features for each latent feature

for k 2 1 . . .KD do

ak ¼ fjjCorrelationðHd
:;k; F

d
:;jÞintop Tg

end for

//Calculate non-zeros latent interactions. 
 is the pairwise

dot product,

� is the outer product.

ss ¼ B
 ðhdðuÞ � hdðvÞ � hsðtÞ
tt ¼ fði; j; kÞjssi;j;k > 0g

//Extract potentially associated drug features for the triple

Re 1
for ði; j;kÞ 2 tt do

Re Re [ fðNon� zero features of fdðuÞ 2 ai;

Non� zero features of fdðvÞ 2 akÞg
end for

Return Re
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Members of this class inhibit the reuptake of the neurotransmit-

ter serotonin into cells (Ritter et al., 2019). Through this inhib-

ition, sertraline increases serotonin levels outside of the cells and

allows serotonin to remain longer at its site of action.

Naratriptan is known to cause heart-related side effects through

serotonin receptor agonism at serotonin type 1 receptors (Dodick

et al., 2004; Ritter et al., 2019). Therefore, the predicted side ef-

fect can be a direct consequence of sertraline increasing the level

of endogenous serotonin and naratriptan acting at serotonin

receptors in the heart, with the resulting changes visible in elec-

trocardiogram recordings.

5 Conclusion and discussion

We have proposed SPARSE to learn the latent representations of drugs,
side effects and interactions, through hypergraph neural networks.
SPARSE addresses three important issues of state-of-the-art DDI predic-
tion, which have not been addressed by any other methods. Extensive
empirical validation using both synthetic and real data showed that
SPARSE outperformed all current, cutting-edge methods for DDI pre-
diction, verifying the effectiveness of multiple types of latent interaction
assumptions and the sparsity control setting of SPARSE.

Possible future work is to generalize SPARSE for higher-order
drug interactions with multiple drugs. Another interesting direction
might be to apply SPARSE to other sparse, high-dimensional data in
bioinformatics.
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