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For convenience, we first introduce the general formula of the proposed SPLIT:
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s.t. Θ = (A ◦B)H, B ≥ 0, (1)

In the subsequent sections, we present the proofs for Theorems 1 and Proposition 1 in the main paper.

1 Proof of Theorem 1 in the main paper
Theorem 1. Let (Ŵ, Ĥ) be the optimal solution of the following optimization problem,
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where wv
t is the v-th view sub-vector of the k-th column of W. If (Â, B̂, Ĥ) is the optimal solution of (1), the following
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To prove the equivalence of (1) and (2), we need an intermediate optimization problem
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Similar with the proof in [Wang et al., 2016], we first prove the equivalence of the optimal solutions of (2) and (5) by Theorem 2,
then show the equivalence of the optimal solutions of (2) and (1) by Theorem 3, and finally reach our conclusion in Theorem 1.
Theorem 2. Given arbitrary W and H, the optimization problem (5) can be optimized w.r.t. ρ by the following setting,
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Proof. According to the Cauchy-Schwarz inequality, the following inequality holds
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in which the equation is satisfied when ρvk =
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. Thus, substituting (7) into (5), we can see that the objective
function of (2) is the lower bound of the objective function of (5) with the setting that γ = 2

√
µ1µ2. Let J1(W,H) and

J2(W,ρ,H) denote the objective functions of (2) and (5), respectively. Given arbitrary W and H, we have J1(W,H) ≤
J2(W,ρ,H) and the equality holds if ρ is calculated by (6).

In order to prove the equivalence of the optimal solutions of (2) and (5), we first prove that once (Ŵ, Ĥ) optimizes (2),
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(Ŵ, Ĥ) = argmin
W,H
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Here, the proof is provided by the approach of contradiction. Let’s assume that there exists an optimal solution (W̃, ρ̃, H̃) 6=
(Ŵ, ρ̂, Ĥ) for problem (5), such that J2(W̃, ρ̃, H̃) < J2(Ŵ, ρ̂, Ĥ). According to (7) and ρ̃vk =
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(2) can achieves lower objective value at (W̃, H̃) than that of (5), since its objective function is a lower bound of (5), namely,
J1(W̃, H̃) ≤ J2(W̃, ρ̃, H̃). Thus, we have the following equation,

J1(W̃, H̃) ≤ J2(W̃, ρ̃, H̃) < J2(Ŵ, ρ̂, Ĥ) = J1(Ŵ, Ĥ), (9)

which contradicts to the first formula in (8).
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Similarly, we assume that there is an optimal solution (W̃, H̃) 6= (Ŵ, Ĥ) for problem (2), such that J1(W̃, H̃) < J1(Ŵ, Ĥ).
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J2(Ŵ, ρ̂, Ĥ), contradicting to the first formula in (10).

Theorem 3. Given the setting that αv
k = |βv

k |−1wv
k and ρvk = |βv

k |q , the optimal solution (Ŵ, ρ̂, Ĥ) of problem (5) is
equivalent to the optimal solution (Â, B̂, Ĥ) of problem (1), when the following equations hold,

λ1 = µ
qs

2qs−p

1 µ
qs−p
2qs−p

2 , λ2 = µ2, s =
p+ q

2q
. (11)

Proof. Based on αv
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The inequality in (12) holds due to the Cauchy-Schwarz inequality, in which the equation is satisfied if
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In this sense, given arbitrary W and H, the objective function of (1) is optimized when B follows (13), and its lower bound is
achieved by (12).

First, let’s prove the equivalence of optimal solutions (Ŵ, ρ̂, Ĥ) from (5) to (1). Let’s J2 denote the objective function of
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∥∥∥Ĥ∥∥∥2
F

=

T∑
t=1

L(yt,
1

V
Xtθ̂t) + µ1

K∑
k=1

V∑
v=1

|β̂v
k |

p
s−q ‖α̂v

k‖
p/s
p + µ2

K∑
k=1

V∑
v=1

|β̂v
k |q + η

∥∥∥Ĥ∥∥∥2
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According to ρ̂vk = |βv
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Therefore, given the setting (11), once the solutions (Ŵ, ρ̂, Ĥ) optimizes (5), then (Â, B̂, Ĥ) optimizes the problem (1) with
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k and ρ̂vk = |β̂v
k |q , ∀k, v.

Then, we will prove the equivalence of optimal solutions from (1) to (5) in a similar way. Given the optimal solutions
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∥∥∥Ĥ∥∥∥2

F
, (17)

indicating that Ŵ and ρ̂ optimize the problem (17). Based on equivalence condition of the Cauchy-Schwarz inequality, we can
show that the optimal ρ̂ follows the following equation,
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With the setting (11), (19) becomes the exact form of (5), and thus (Ŵ, ρ̂, Ĥ) optimizes the problem (5).

2 Proof of Proposition 1 in the main paper
Given the proposed optimization problem of SPLIT,
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Proposition 1 is derived for the proposed optimization algorithm in the main paper.

Proposition 1. The iterative optimization algorithm of Algorithm 1 does not increase the objective function of (20) in each
iteration, indicating that

J(A(i+1),B(i+1),H(i+1)) ≤ J(A(i),B(i),H(i)), (21)

in the (i+ 1)-th iteration, with J(A,B,H) denoting the objective function of (20) w.r.t. A, B and H.
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Note that here we aim to provide a proof for a general version of J(A,B,H), where the objective function in (20) is a special
case of (20) in setting of p = 1 and q = 2. According to the equation W = A ◦ B and Theorem 1, (22) is equivalent to the
following rewritten formula:
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Suppose that the optimal solution {A(i),B(i),H(i)} at the i-th iteration is calculated by Algorithm 1, we first attempt to
prove that, updating b based on fixed A and H and Table 1 in the main paper does not increase the objective (22), i.e.,

J(A(i),B(i+1),H(i)) ≤ J(A(i),B(i),H(i)). (24)
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Algorithm 1 Optimization algorithm of SPLIT

Input: {Xv
t }t,v , {yt}t, λ1, λ2, η, K.

Output: Θ = WH = (A ◦B)H.
1: Initialized A, B and H.
2: repeat
3: Update A by solving the problem: minA
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6: until Convergence

and the equation holds when B follows (4). Thus, updating B(i+1) by (4) with fixed A(i) and H(i) will reach the lower bound
of f(W(i),B,H(i)), leading to

J(W(i),B(i+1),H(i)) ≤ f(W(i),B(i),H(i)). (26)

Since J(A,B,H) = J(W,B,H) with W = A ◦ B, (26) can be reformulated as (24).
Next, when B and H are fixed, A is updated by solving the optimization problem:
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Once a convex and smooth loss function, like squared loss, hinge loss and logistic loss, as well as a simple regularization
norm, such as `2-norm and `1-norm, are employed in (27), efficient gradient descent algorithm [Robbins and Monro, 1951;
Nesterov, 2013] can be applied to solve (27) with global convergence property w.r.t. A. Therefore, updating A with fixed
B(i+1) and H(i) leads to

J(A(i+1),B(i+1),H(i)) ≤ J(A(i),B(i+1),H(i)). (28)

Finally, once A and B are fixed, H is updated by soling the following problem:
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Given the squared loss function, problem (31) has a closed-form solution, indicating that

J(A(i+1),B(i+1),H(i+1)) ≤ J(A(i+1),B(i+1),H(i)). (30)

Taking (24), (28) and (30) into consideration, we have

J(A(i+1),B(i+1),H(i+1)) ≤ J(A(i+1),B(i+1),H(i)) ≤ J(A(i),B(i+1),H(i)) ≤ J(A(i),B(i),H(i)), (31)

in accordance with the conclusion (21) in Proposition 1.

3 Implementation and convergence analysis for Section: Optimization algorithm
In Algorithm 1, we provide the optimization algorithm of SPLIT discussed in Sec.5 of the main paper. We apply an alternating
algorithm to update A, B and H in an iterative manner. It is worth noting that, compared optimizing W directly, optimizing
optimizing A and B separately brings in a very small number of extra variables, as the number (V ×K) of effective parameters
in B is typically very small.

To evaluate the convergence ability of Algorithm 1, we conduct experiment on one synthetic dataset, and two real-world
datasets, Caltech101 and NUS-Object. In this experiment, we randomly select 30%, 20% and 20% of total samples as training
set, validation set and testing set, respectively, and set the parameters of SPLIT as λ1 = λ2 = η = 1. We terminate Algorithm 1
once the relative change of its objective is below 10−5. Figure 1 shows the convergence curves of the objective function value
by Algorithm 1.

4 Data preparation for Section: Experimetns
The following four real-world datasets are used for evaluating comparing methods in the main paper.

• Mirflickr: It collects 25,000 Flickr images, which has 15 relevant labels (tasks). Each image (sample) is represented by
two types (views) of features: image edge histogram and image homogeneous texture.



(a) Synthetic data (b) Caltech101 (c) NUS-Object

(d) Synthetic data (e) Caltech101 (f) NUS-Object

Figure 1: Convergence analysis of Algorithm 1 (λ1 = λ2 = η = 1) on one synthetic dataset and two real-world datasets. The algorithm
converged at the 206th, 1318th and 1395th iteration on the synthetic data, Caltech101, and NUS-Object, respectively. The 1st row shows the
original objective value, while the 2nd row shows the objective value in the logarithmic scale. In each sub-figure, Funval and Loss denote
the objective value and value of loss function, respectively, and R1, R2 and R3 denote the values of three regularization terms.



(a) Designed model Θ (b) Learned model Θ̂ by SPLIT1

Figure 2: Illustration of multiplicative feature decomposition (Right hand) by SPLIT1 on simulated data with designed model Θ (Left
hand). The model Θ̂ = (Â ◦ B̂)Ĥ is learned by SPLIT1. Darker yellow (blue) color indicates larger (smaller) values in magnitude.

• Caltech101: It collects images (samples) of objects belonging to 101 categories (tasks), where each category (task) has
40-800 images (samples), and each image has 6 types (views) of low-level features.
• NUS-Object, NUS-Scene: They are extracted from the NUS-WIDE dataset for web image annotation. Images (samples)

are annotated by a set of class labels (tasks), and each image has 5 types (views) of low-level features.
To preprocess the datasets, we filter out textual features with a low frequency in `2-normalized TFIDF, and discard tasks with

a relatively small number of positive instances.

5 Case study on feature decomposition for Section: Experiments
We illustrate multiplicative feature decomposition of SPLIT on one designed synthetic dataset in Fig 2, where Θ̂ = (Â ◦ B̂)Ĥ
is learned by SPLIT with the setting λ1 = 101, λ2 = 103 and η = 104. To quantitatively measure the closeness between the
patterns of Θ and Θ̂ in Fig. 2, we introduce the following similarity metric for arbitrary matrices C and D1 in the same size,

sim(C,D) = 1−
‖C−D‖2F
‖D‖2F

∈ [0, 1]. (32)

The higher the value of sim(C,D), the more similar between C and D. We calculate the similarity between the underlying
model and the learned model, and list the results in Table 1. As shown in Fig. 2 and Table 1, SPLIT1 successfully detects the

Table 1: Similarity between the underlying model and the learned model.

sim(A, Â) sim(B, B̂) sim(W,Ŵ) sim(H, Ĥ) sim(Θ, Θ̂)

0.8394 0.9341 0.9902 0.9944 0.9944

underlying models by selecting topic-specific features in A, learning view-wise weights in B, and saving task correlation in
W = A ◦B and H.

6 Statistical test for Section: Experiments
To perform statistical test on experimental results in Table 2 of the main paper, we apply Nemenyi test [Demšar, 2006], which
allows to statistically evaluate the performance between every two methods. In Nemenyi test, the performance of two methods
is regarded as significantly different if their average ranks differ by at least the critical difference (CD). Fig. 3 shows the CD
diagrams for four evaluation metrics at 0.05 significance level. In each subfigure, the CD is given above the axis, where the
averaged rank is marked. In Fig. 3, algorithms which are not significantly different are connected by a thick line. As shown
in Fig. 3, SPLIT1 and SPLIT2 ranked 1st and 2nd, respectively, and statistically outperformed Lasso, Ridge and MFM in both
evaluation metrics. Two multiplicative feature decomposition methods, MLL and MMTFL, achieved statistically comparable
performance with SPLIT. The observation shows that decomposing weight matrix multiplicatively indeed incorporates better
generalization ability with the learning model, leading to superior prediction accuracy than the baselines.

1Both matrices have been normalized such that any element in C and D lies in [0, 1]



(a) AUC (b) Accuracy

Figure 3: CD diagrams (0.05 significance level) of seven comparing methods in two evaluation metrics. The performance of two methods is
regarded as significantly different if their average ranks differ by at least the Critical Difference (CD).
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