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Abstract Various data mining methods have been developed last few
years for hepatitis study using a large temporal and relational database given
to the research community. In this work we introduce a novel temporal ab-
straction method to this study by detecting and exploiting temporal patterns
and relations between events in viral hepatitis such as “event A slightly hap-
pened before event B and B simultaneously ended with event C”. We de-
veloped algorithms to first detect significant temporal patterns in temporal
sequences and then to identify temporal relations between these temporal pat-
terns. Many findings by data mining methods applied to transactions/graphs
of temporal relations shown to be significant by physician evaluation and
matching with published in Medline.

Keywords: Temporal Patterns, Temporal Relations, Hepatitis Study.

§1 Introduction
Viral hepatitis is a disease in which tissue of the liver is inflamed by the

infection of hepatitis viruses. As viral hepatitis has a potential risk to liver
cirrhosis and hepatocellular carcinoma (HCC) – which is the most common type
of liver cancer and the exact cause of HCC is still unknown – studies on viral
hepatitis, specially on hepatitis type B and type C, are crucial in medicine.
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Recently, a precious source for hepatitis study has been given by Chiba
university hospital to the data mining community.12) The hepatitis temporal
database collected during twenty years (1982-2001) containing results of 771
patients on 983 laboratory tests. It is a large temporal relational database con-
sisting of six tables of which the biggest has 1.6 million records. Collected during
a long period with progress in test equipments, the database is un-cleansed and
contains inconsistent measurements, many missing values, and a large num-
ber of non-unified notations. In last few years, six problems P1-P6 posed by
physicians in hepatitis study using the above database have attracted different
research groups, for example.8,18,21)

It is worth noting that methods for processing medical temporal data
essentially aim to detect temporal patterns in temporal sequences,6) and they
can be viewed in two categories: methods for categorical time series with focus
on discovering frequently occurring episodes in a sequence,15,16) and methods for
numerical time series with focus on trend detection.3,4,8, 11) Techniques in each
category can be either supervised or unsupervised.

Temporal abstraction (TA) is an approach to temporal pattern detection
that aims to derive an abstract description of temporal data by extracting their
most relevant features over periods of time.3,6) Typical TA works in the literature
deal with regular temporal data, says, temporal data of an individual measured
on consecutive days in a short period,4) diabetes data measured on consecutive
days within two weeks; newborn infants regularly measured every minute.11)

Different from the regular data processed by the above mentioned TA methods,
the hepatitis data was collected irregularly in long periods, and none of the above
methods can be applied to.

We approach the hepatitis database by novel temporal abstraction meth-
ods aiming at explaining the causes and mechanisms of hepatitis diseases in a
comprehensible way to physicians. Our early work 9) developed a supervised
TA technique called abstraction pattern extraction (APE) whose task is to map
(to abstract) a given fixed length sequence into one of predefined abstraction
patterns. In this work we develop a unsupervised TA technique called tempo-
ral relation extraction (TRE) whose task is to find temporal relations in terms
of temporal logic among detected temporal patterns, and use these relations
together with abstraction patterns to solve problems P1-P2. Temporal logic
was developed as a theory of action and time by Allen whose basis is relations
between temporal events.1,2) The key idea that makes our TRE work efficient
and different from other methods of temporal pattern detection is the domain-
oriented temporal patterns are defined basing on properties of hepatitis disease
but not in a formal manner.

This work contributes to methods of detecting temporal patterns from ir-
regular temporal sequences and temporal relations among detected patterns, and
more interestingly, various findings have reconfirmed reported medical knowledge
and some are surprising to physicians. Section 2 of the paper presents the data,
problem, and the framework. Section 3 describes the methods. Section 4 pro-
vides the obtained results and analysis. The last section gives discussion and
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Fig. 1 Temporal Relations in Allen’s Temporal Logic

conclusions.

§2 Hepatitis Data and Temporal Basic Patterns
The hepatitis database consists of the following data tables:

T1. Basic information of patients (771 records)
T2. Results of biopsy (960 records)
T3. Information on interferon therapy (198 records)
T4. Information about measurements in in-hospital tests (459 records)
T5. Results of out-hospital medical tests (30,243 records)
T6. Results of in-hospital medical tests (1,565,877 records).

Our focus in this work is on problems P1-P2 among six problems posed
by physicians to challenge the KDD community 12):
P1. Discover the differences in temporal patterns between hepatitis B and

C (HBV and HCV).
P2. Evaluate whether laboratory tests can be used to estimate the stage of

liver fibrosis (LC (liver cirrhosis) vs. nonLC (non liver cirrhosis)).

For each patient Ok the measured values ei on a medical test Aj over
time are an event sequence Sjk = (e1, t1), (e2, t2), ..., (en, tn). In case of the
hepatitis data, sequences Sjk can be long as observed during twenty years. The
starting point of our work is the view on temporal patterns. It is worth noting
that the temporal pattern is a rather broad concept and defined differently in
temporal data mining, in particular the view on temporal patterns in terms of
13 kinds of temporal relations (Fig. 1) between two events A and B summarized
by Allen in the temporal logic.1,2) In 10) a temporal pattern is considered as a
set of states together with their interval relationships described in the Allen’s
interval logic.1,2) Kam and Fu 14) also use Allen interval operators to formulate
patterns but restricted to the form with concatenation on the right hand side
(((・A1rel1A2)rel2A3)・elk−1Ak).

In this work we consider a temporal pattern as a conjunction/relation of
temporal basic patterns (hereafter called basic patterns). In the following we will
define two kinds of basic patterns for a sequence of test values that are sensitive



ngc25303 : 2007/5/30(11:39)

250 T.B. Ho, C.H. Nguyen, S. Kawasaki, S.Q. Le, K. Takabayashi

to the type of tests. In the hepatitis study, we selected 24 typical tests from 983
tests based on the opinion of physicians and the preprocessing/analysis results
of different research groups.17) These tests are divided into two types:

1. Short-term changed tests: These include four tests GOT, GPT, TTT,
and ZTT that characterize liver inflammation and their values can
highly increase in short terms (within several days or weeks) when liver
cells are destroyed by inflammation.

2. Long-term changed tests: The other twenty tests characterize the liver
reserve capacity and change smoothly their values in long terms (within
months or years) when their reserve capacity becomes exhausted.
Among these tests, there are two subgroups with clear trends:

• Going down: T-CHO, CHE, ALB, TP, PLT, WBC, and HGB.
• Going up: D-BIL, I-BIL, T-BIL, and ICG-15.

The temporal abstraction process is based on temporal abstraction prim-
itives viewed as abstraction units. In fact, each test value belongs to either the
normal region or an anormal region, viewed as event state, such as high and low
regions (which can be further divided into smaller regions) ∗1. Each subsequence
of a given event sequence now can be abstracted using event states, concretely,
assigning to it the label of the region where the majority of its events belong to.

We determine differently basic patterns for short-term and long-term
changed tests using their detected abstraction states.

[ 1 ] Basic patterns in short-term changed test sequences
The abstraction states of short-term changed tests include N (normal

region), H (high), VH(very high), XH (extreme high), L (low), VL (very low),
and XL (extreme low). We call a peak the event that has its value suddenly
much higher than that of its neighbors.

We define the temporal basic patterns (BP) of a short-term changed test
the subsequence characterizing a inflammation period where the sequence sud-
denly has the high or very high state and with/without peaks. These basic
patterns have the form:

< state of test > = high value or
< state of test > = high value & peaks

where < state of test > denotes the abstraction state of the test sequence and
the test name, and high value is one value in {H, V H,XH}. For example,
“GOT = XH & peak” means “GOT is in extremely high state with peaks”.

[ 2 ] Basic patterns in long-term changed test sequences
The abstraction states of short-term changed tests include N (normal), H

(high), L(low).

∗1 The thresholds to distinguish the values regions of tests are given by physicians, for
example, those to distinguish N, H, VH, XH of the short-term changed test TP (total
protein) are 5.5, 6.5, 8.2, 9.2, respectively, where (5.5, 6.5) is the normal region.
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1. For each object Ok, from the event sequence Sjk on each attribute Aj , find all possible

significant abstracted temporal basic patterns BP on corresponding temporal intervals

T .

2. Consider all temporal basic patterns found from all attributes for each object Ok and

detect all significant temporal relations between those temporal basic patterns in terms

of temporal logic. Represent each object Ok as a graph or a transaction of temporal

relations.

3. Using data mining methods to find temporal rules from the collection of graphs or

transactions.

Fig. 2 Framework of Mining Hepatitis Data by Temporal Relation Extraction (TRE)

We define the temporal basic patterns (BP) of a long-term changed test
the subsequence characterizing the change of states between two state regions.
These basic patterns have the form:

< state of test > = state1 > state2

where state1 and state2 are two different values in {N, H, L} and “>” stands
for “change the state to”. For example, “ALB = N > H”, or more informally
“ALB = NormalToHigh” means “ALB changes from normal to high state”.

Denote by (BP, T ) a temporal basic pattern BP that occurs in a time
interval T = (ts, te) where (ts, te) = t1, t2, ..., tn. Examples of temporal basic
patterns are “ALB decreases from normal to low state”, “GOT has many peaks
in very high state”. In the context of temporal data, we consider only temporal
patterns happening in some period of time, and can implicitly write patterns BP
instead of (BP, T ). As defined above, temporal patterns viewed as temporal
relations between temporal basic patterns are compound statements such as
“Pattern A happened before pattern B and B happened during pattern C” or
the rule such as “If pattern A happened before pattern B and B happened during
pattern C then hepatitis type B”.

The problem of temporal abstraction using temporal relations in mining
hepatitis data can be viewed as finding significant temporal patterns in hepatitis
data to solve problems P1-P2, shown in Fig. 2.

§3 Finding Temporal Patterns
This section describes solutions to the problem of finding temporal basic

patterns (step 1) and complex temporal patterns in form of temporal relations
(step 2) in the framework. The key issue in these steps is that it is hard to
determine exactly interval boundaries T in which temporal basic patterns BT
occur while determining temporal relations between temporal basic patterns
requires comparing their boundaries.



ngc25303 : 2007/5/30(11:39)

252 T.B. Ho, C.H. Nguyen, S. Kawasaki, S.Q. Le, K. Takabayashi

Fig. 3 Original, Smoothing Data and State Changing Period.

3.1 Smoothing Data
As hepatitis data was collected during a long period with progress in test

equipments, the database is un-cleansed, besides various preprocessing works,9,17)

in this work, we first do smoothing event sequences and use smoothed data in-
stead. We employed a moving average filter to smooth data by replacing each
data point with the average of the neighboring data points defined within the
span. This process is equivalent to low-pass filtering with the response of the
smoothing given by the difference equations. Given a data of one patient’s test
(e1, t1), ..., (en, tn) where ei is the test result at time ti. Then, the smoothed
value e for at time t is predicted as

e =
∑

i F (ti − t)× ei∑
i F (ti − t)

where F(.) is an influent function. In our experiment, we choose F (x) = 1/|x|.

3.2 Finding Basic Patterns
After smoothing data, we detect periods of state changing for both short-

term changed tests and long-term changed tests based on the following criteria:

• The first point and last point belong to different states.
• States of the first point and last point are stable for at least 6 months.
• Intervals between consecutive crossing pairs must less than parameter θ1

or intervals between two crossing pairs are less than θ3 and there are at
least MinPoint crossing pairs between them.

• The interval between two consecutive crossing pairs must be less than θ2

By the statistics and visualization of the data, together with discussion
with physicians, we choose θ1 = 12 × 4 weeks, θ2 = 3 × 12 × 4 weeks and
θ3 = 5 × 12 × 4 weeks. Figure 3 illustrates an original events sequence, its
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Algorithm 1. Detecting basic patterns in short-term changed test sequences

Input: A sequence Sjk of a test data from a short-term changed test Aj

Output: Basic patterns characterizing the inflammation in the short-term changed test.

1. Call a data point (ei, ti) a peak if ei > ej + threshold where (ej , tj) is any neighbor

of (ei, ti).

2. Find the most left peak (ei, ti) from the sequence. Set the CurrentPeak = (ei, ti),

the starting and ending boundaries of the period are ts = ti − 1 and te = ti + 1.

3. Find the closest peak on the right of CurrentPeak.

4. If (tj < te) then set te = tj + 1, CurrentPeak = (ej , tj) and return to step 3.

5. If (tj ≥ te) then

a. Calculate the base state BS (without considering peaks) of the interval (ts, te),

b. Form the abstracted temporal event “BS&P ′′ in this interval,

c. Set a new period with the starting and ending boundaries: ts = ti − 1 and

te = tj + 1. Set CurrentPeak = (ej , tj) and Return to step 3.

Fig. 4 Algorithm for Finding Temporal Basic Patterns in a Short-term Changed Test
Sequences

Algorithm 2. Detecting basic patterns in long-term changed test sequences

Input: A sequence Sjk of a test data from a long-term changed test Aj

Output: Basic patterns characterizing the state change periods in the long-term changed test.

1. Detect crossing:

If state(f(t)) 6= state(f(t + 1)) then t is a crossing point.

2. Merging crossing points:

• If length(crossing point i, crossing point i + 1) ≤ θ1 then merging i and i + 1.

• If length(crossing point i, crossing point i + 1) > θ2 then separating i and

i + 1.

• If length(crossing point i, crossing point i + 1) < θ3 and j − i > n then

merging i and j.

3. Interval detecting: For each crossing point (an interval of merged crossing points), if

it is stable for 6 months before and after, then this crossing point (the interval) is a

change period.

Fig. 5 Algorithm for Detecting Basic Patterns in a Long-term Changed Test Sequences

smoothed sequence and state changing period. Algorithm 1 in Fig. 4 is for
detecting basic patterns for short-term changed tests and Algorithm 2 in Fig. 5
is for long-term changed tests.

3.3 Finding Temporal Relations
The step 2 in our framework aims to build a graph or a transaction of
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Algorithm 3. Find a transaction or a graph of temporal relations

Input: The set of all associated events to one object Ok

Output: A transaction or graph of temporal relations.

1. To build a transaction

• Initialize the transaction as an empty set.

• Check all pairs of events for each temporal relation type. If a pair matches the

relation, add this relation to the transaction.

2. To build a graph

• Build the transaction of relations as in the previous step.

• Build the graph by adding each existing temporal relation to the graph when

considering the events as vertices and relations as edges.

Fig. 6 Algorithm for Finding a Transaction/Graph of Temporal Relations.

possible temporal relations from each object (patient) Ok starting from all of
its detected events. A basic algorithm to do this task was originally given in
1) using constraint propagation technique (the transitive property of temporal
events). In this work on hepatitis data, due to the specific features of the data,
we develop an appropriate technique based on:

• Soft matching: at the boundaries of intervals for relations “equal ”,
“meet”, “start”, “finish”, and “overlap”. The boundary points of two
events are considered the same (time) if their absolute difference is
smaller than a given threshold, or considered as different in ”overlap”
relation if their absolute difference is greater than a given threshold.

• “Slightly” is a key constraint for the “before” relation, i.e., we consider
only relations of the form “A slightly before B” viewed by some
threshold.

Noting that the constraint propagation in 1) causes a great number of
induced relations usually when applied to the relation “before” to, and the set
of events associated to each object (patient) has size up to several hundreds, we
propose an exhaustive and direct examination of all relations of such events in
order to find all possible temporal relations.

§4 Mining Abstracted Data and Evaluation
In this section, we describe experiments and their results on the hepatitis

data for the two problems of P1 and P2. Even though the primary purpose
is to find the causes and explaining the mechanism of diseases, we carried out
two studies: prediction study to see if the extracted data can be good for (even
black box) classification; and description study to find comprehensible rules for
the primary purpose.
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4.1 Prediction Study
We would like to evaluate the quality of extracted data to see whether

the proposed framework and preprocessing steps are appropriate. We studied
whether the extracted data contain enough useful information for the two prob-
lems P1 and P2. We used WEKA ∗2 as the experiment environment. For each
problem:

1. Run the algorithms in Section 3 to generate a transaction of temporal
patterns for each patient.

2. Converted the transactions with class label into table format.
3. Run feature selection techniques.
4. Run classification methods in WEKA.

In step 1, the algorithms in Section 3 returned 610 (out of 771) patients
(372 HCV and 238 HBV) that more than one temporal relation was detected
for P1. After converting into table format incorporating class labels, it resulted
in a table with 1888 features. Similarly for problem P2, only 108 patients (71
non-LC and 37 LC) were returned with totally 403 features. Due to the large
number of features, in step 3, we run the feature selection techniques. The
feature selection techniques that gave the highest classification accuracy are
Correlation Based Feature subset selection for P1 and Information Gain Filtering
for P2. Step 3 resulted in 62 features for P1 and 20 features for P2. Filtering
the patients without any event after feature selection, P1 data now contains
498 patients and P2 data contains 69 patients. From our observation, using
feature selection improved significantly prediction accuracies. We run various
classification methods and the best results were summarized as follows:

• For problem P1, Naive Bayes classifier gave an accuracy of 77.56% with
10 times 10-fold stratified cross-validation.

• For problem P2, Naive Bayes classifier gave an accuracy of 78.70% with
leave-one-out cross-validation.

For the same problem of P1, a completely different approach 18) also re-
ported a comparable accuracy of 77.60%. However, the key difference in our
work is that we are able to extract data for 576 patients in comparison with 193
patients in theirs. This means that our approach give similarly reliable informa-
tion from a much larger number of patients. For problem P2, our accuracy was
lower than that reported in 21) (88.2%).

4.2 Description Study
As it is crucial that physicians need to evaluate results of hepatitis data

mining, the main target of this work is to describe the diseases in a comprehen-
sible form. Therefore, we used rule learning algorithms to generate rules from
the extracted data. Our work follows four steps:

1. Created a transactional database for each hepatitis problem by
∗2 http://www.cs.waikato.ac.nz/ml/weka/
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proposed algorithms described in Section 3.
2. Used software CBA ∗3, our LUPC ∗4 and See5 to find rules from the

transactional database with default parameters.
3. Filtered statistically significant rules by hypothesis testing.
4. Analyzed the findings with/by physicians.

The key difference from prediction study is that the set of description rules
was not meant to cover the whole data set. Instead, each rule itself should be
of high precision or high coverage. Another difference is that for interpretable
reason, we eliminated the rules containing any condition like “if NOT ALB
changes from normal to low etc then ...”. Such a condition is considered not
to make any medical sense. For the above reasons, the set of description rules
might not perform well on the training data in terms of accuracy. However, the
rule set should be able to explain some part of the data in a comprehensible way.

[ 1 ] Rules for hepatitis types: HBV and HCV
Using CBA, we were able to generate a set of 238 rules, in which 20 rules

for HBV and 218 rules for HCV. The overall accuracy of the prediction rule sets
on the training data is 89.34%. Contingency table of the rule set on training
data is as follows.

Predicted HBV HCV

Correct
HBV 208 30
HCV 35 337

Table 1 shows the set of typical rules for describing HBV and HCV. The
first column is the rule identification number generated by the classifier. Next,
“Class” is the predicted class of the rule. “Cov.” means the number of patients
the rule covers, and “Conf.” is the confidence of the rule. The “Rule Conditions”
is a conjunction of temporal patterns playing the role of condition for the rule.
We can observe the component test items in the temporal events exhibit different
temporal patterns for each of HBV and HCV as follows:

Observation 1: Even when there are temporal relations between GOT
and GPT, even both GOT and GPT have peaks in High region, the rules in
which ALP oscillate between Normal and Low are for HBV while the ones in
which ALP oscillate between High and Normal are for HCV.

Some rules support this observation are the numbers: 145 (ALP changes
from Low to Normal etc., class HBV), 206 (ALP changes from Normal to Low
etc., class HBV), 20 (ALP changes from High to Normal, class HCV) and 202
(ALP changes from Normal to High etc., class HCV).

Observation 2: Among patients who have peaks on both GPT and
TTT in High regions, T-BIL decreases from High to Normal in HBV patients,
while T-BIL decreases Normal to Low in HCV patients. Some rules support

∗3 http://www.comp.nus.edu.sg/∼dm2
∗4 http://www.jaist.ac.jp/ks/labs/ho/Projects.htm



ngc25303 : 2007/5/30(11:39)

Exploiting Temporal Relations in Mining Hepatitis Data 257

Table 1 Some Typical Rules for HBV and HCV

RID Class Cov. Conf. Rule Conditions

145 B 3 100.0% ALP=LowToNormal & GOT=Normal

206 B 20 80.0% ALP=NormalToLow & GOT=High Ends GPT=High

20 C 13 100.0% ALP=HighToNormal
& GOT=High Starts GPT=High

202 C 56 82.1% ALP=NormalToHigh Before GOT=High
& GPT=High Before GOT=High

196 B 12 83.3% T-BIL=HighToNormal & GPT=High Ends TTT=High

185 C 7 85.7% T-BIL=NormalToHigh & GPT=Normal

167 C 25 92.0% T-BIL=NormalToLow Before TTT=High
& GPT=High Before TTT=High

25 C 12 100.0% T-BIL=NormalToLow Before TTT=High
& T-BIL=NormalToLow Before GPT=High

203 C 28 82.1% T-BIL=NormalToLow Before GPT=High
& TTT=High

188 B 13 84.6% GPT=High Ends TTT=High
& GPT=High Ends ZTT=High

217 C 139 77.0% GPT=High Before TTT=High
& TTT=High Before ZTT=High

176 C 10 90.0% GPT=Normal & TTT=High Starts ZTT=High

151 B 3 100.0% TP=NormalToLow Before ZTT=High
& TTT=High Starts ZTT=High

8 C 18 100.0% TP=NormalToHigh & TTT=High Before ZTT=High

2 C 23 100.0% TP=HighToNormal & TTT=High Before ZTT=High

219 B 56 75.0% TTT=Normal & ZTT=Normal

227 B 34 70.6% TTT=Normal & CHE=HighToNormal

226 C 78 70.5% TTT=High Before GOT=High
& GPT=High Start GOT=High

193 C 49 83.67.3% TTT=High Before ZTT=High
& F-A1.GL=NormalToLow

this observation are the numbers: 196 (class HBV), 185 (class HCV), 203 (class
HCV), 167 (class HCV) and 25 (class HCV).

Observation 3: Patients who have temporal relations of peaks in both
TTT and ZTT have different state change on TP. In case of HCV , TP moves
from High to Normal, meanwhile it changes from Normal to Low for HBV. Some
rules support this observation are the numbers: 151 (class HBV), 8 (class HCV)
and 2 (class HCV).

Matching with Medline abstracts: We looked for some reported re-
sults from medical researches to find evidences for and against our findings. We
developed a simple search program integrating both keywords and synonyms in
the query.

Murawaki et al.19) showed that the main difference between HBV and
HCV is that the base state of TTT in HBV is normal, while that of HCV is
high. We examined the rule sets and found that our rules are more complicated
than that as they also include various temporal relations. However, there are
many rules of very high coverage and high confidence, TTT appeared to be
mostly in High state for HCV but in Normal state for HBV. We showed some
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rules support this finding in the table with numbers: 219, 227 226 and 193.
This means that even though our rules are not exactly identical to reported
knowledge of medical research, such knowledge is confirmed true in our rule set
under certain condition.

[ 2 ] Rules for liver cirrhosis: LC and non-LC
Using CBA, we were able to generate a set of 61 rules, in which 21 rules

for LC and 40 rules for non-LC. The overall accuracy of the prediction rule sets
on the training data is 96.30%. Contingency table of the rule set on training
data is as follows.

Predicted LC non-LC

Correct
LC 37 0

non-LC 4 67

Some rules in the set can be seen from the Table 2. Notions in the table
are identical to that in Table 1. From the rule sets, we observed the following
phenomena:

Observation 1: There are more rules for non-LC patients and most
of them are of higher precision and coverage. This conforms to the common
knowledge of experts that LC is harder to detect.

Observation 2: There were some long term changed test items that
appeared mostly in LC patients. They are I-BIL and ALB. The following rules
for LC patients support this observation:

• Rule 15: I-BIL changes from normal to low (coverage: 5 patients, preci-
sion: 100%).

• Rule 26: I-BIL changes from high to normal and ALB changes from low
to normal (coverage: 4 patients, precision: 100%).

• Rule 27: ALB changes from low to normal and TTT has peaks in normal
state (coverage: 4 patients, precision 100%).

From this, we may induce that I-BIL and ALP change their states mostly
in LC patients, not in non-LC ones. They can be good indicators for predicting
liver cirrhosis patients.

Observation 3: There were some long term changed test items that
appeared mostly in non-LC patients. They are LDH, CRE, T-BIL and ALP.
The following rules for non-Lc patients support this observation:

• Rule 1: CRE changes from normal to low and ZTT has peaks in normal
(coverage: 10 patients, precision 100%).

• Rule 2: T-BIL and LDH change from normal to Llow, GOT and TTT
have peaks in high (coverage: 10 patients, precision: 100%).

• Rule 5: T-BIL changes from normal to low, ALP changes from normal to
high, GOT and TTT have peaks in high (coverage: 8 patients, precision:
100%).

• Rule 8: ALP changes from normal to high Before TTT has peaks in high
and ZTT has peaks in high (coverage: 7 patients, precision: 100%).
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Table 2 Some typical rules for (non-) liver cirrhosis

RID Class Cov. Conf. Rule Conditions

58 NonLC 12 91.7% GOT=High Ends GPT=High & TTT=Normal

1 NonLC 10 100.0% CRE=NormalToLow & TTT=Normal

2 NonLC 10 100.0% T-BIL=NormalToLow & LDH=NormalToLow
& GOT=High & TTT=High

3 NonLC 10 100.0% T-BIL=NormalToLow & ZTT=High
& LDH=NormalToLow & TTT=High

5 NonLC 8 100.0% T-BIL=NormalToLow & ALP=NormalToHigh
& GOT=High & TTT=High

9 NonLC 7 100.0% ZTT=High Before GPT=High & ALP=NormalToHigh
& TTT=High Before GPT=High

8 NonLC 7 100.0% ALP=NormalToHigh Before TTT=High
& ZTT=High

13 NonLC 6 100.0% ZTT=High & T-BIL=HighToNormal & GOT=High
& TTT=High

11 NonLC 6 100.0% GPT=High Before ZTT=High & TTT=Normal
& TTT=High

12 NonLC 6 100.0% ZTT=High & LDH=NormalToLow
& T-BIL=HighToNormal

17 NonLC 5 100.0% CRE=NormalToLow & ALP=HighToNormal

14 NonLC 5 100.0% GPT=High Before ALP=NormalToHigh

15 LC 5 100.0% I-BIL=NormalToHigh

26 LC 4 100.0% I-BIL=HighToNormal & ALB=LowToNormal

27 LC 4 100.0% TTT=Normal & ALB=LowToNormal

37 LC 3 100.0% ALB=NormalToLow & LDH=NormalToLow

38 LC 3 100.0% T-BIL=LowToNormal & ALP=NormalToHigh
& TTT=High Before GPT=High

• Rule 12: LDH changes from normal to low, T-BIL changes from high
to normal and ZTT has peaks in high (coverage: 6 patients, precision:
100%).

• Rule 61: LDH changes from normal to low, ZTT and TTT have peaks in
high (coverage: 36 patients, precision 100%).

From this, we may induce that LDH, CRE, T-BIL and ALB change their
states mostly in non-LC patients, not in LC ones. They can be good indicators
for predicting non-liver cirrhosis patients.

§5 Discussion and Conclusion
We have presented a temporal relation approach to mining the temporal

hepatitis data. The early findings in our on-going project present some inter-
esting temporal patterns to physicians. The main contribution of the work is
temporal relations allows us to find a kind of temporal relations that well de-
scribe hepatitis. Some findings are either quantitatively reconfirmation of medi-
cal observations or providing insight, some time contrast, to the medical general
knowledge. In short, the approach is well evaluated by hepatitis experts.

In our opinion, the main advantage of temporal abstraction techniques
is their generalization and summarization power for the description task from
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temporal data. Even though temporal abstraction techniques are not developed
for prediction task as the abstraction process may discard many details, they
still give encouraging prediction accuracies. It is natural to think that temporal
abstraction techniques, when combining appropriately with numerical conditions
or domain knowledge represented in other formalisms can be well applied to
the prediction task.13) Our future work consists of the continuation of making
temporal relations feasible and useful in mining temporal data, in particular
hepatitis data, and the integration of data mining methods with text mining
and expert knowledge.
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