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Abstract

Research in natural products has always enhanced drug discovery by providing new and unique chemical compounds.
However, recently, drug discovery from natural products is slowed down by the increasing chance of re-isolating known
compounds. Rapid identification of previously isolated compounds in an automated manner, called dereplication, steers
researchers toward novel findings, thereby reducing the time and effort for identifying new drug leads. Dereplication identi-
fies compounds by comparing processed experimental data with those of known compounds, and so, diverse computa-
tional resources such as databases and tools to process and compare compound data are necessary. Automating the dere-
plication process through the integration of computational resources has always been an aspired goal of natural product
researchers. To increase the utilization of current computational resources for natural products, we first provide an over-
view of the dereplication process, and then list useful resources, categorizing into databases, methods and software tools
and further explaining them from a dereplication perspective. Finally, we discuss the current challenges to automating der-

eplication and proposed solutions.
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Introduction

Natural products have been a precious resource for drug discov-
ery and lead identification [1-3]. In all, 75% of all Food and Drug
Administration-approved small molecules are either natural
compounds or derivatives therefrom [4]. The potential of nat-
ural products in drug discovery can be attributed to their unique
structural scaffolds and high complexity, creating diverse biolo-
gical screening libraries [5]. Besides being attractive drug leads,
the complexity of natural products and high content of stereo-
genic atoms increase protein binding selectivity [6], allowing
natural products to be used in ligand design, particularly frag-
ment-based drug design [7].

Despite the potential of natural products, there are two main
factors that limit their role in recent drug discovery and lead
identification research: i) time-consuming identification of
active compounds: The general manner of experimental design

for identifying natural products remained unchanged through-
out the past decades. That is, it requires time-consuming purifi-
cation and inefficient manual interpretation of compound
nuclear magnetic resonance (NMR) spectra by experts.
ii) Repetitive effort for identifying known compounds. While it
is estimated that more than 250,000 natural compounds have
already been isolated [8, 9], incorporation of such knowledge to
enhance drug discovery is still not fully exploited.

To overcome these two factors, one promising approach is
dereplication, which is the early identification of known
compounds without time-consuming manual structure elucida-
tion [10, 11]. Putative compounds are obtained by comparing
preliminary spectral data to spectral databases of known
compounds (This review mainly focuses on NMR spectra, while
methods, software and databases of NMR spectra can be applied
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to other types of spectra, such as mass spectrometry [MS]).
Early detection of known compounds and their reported and po-
tential biological activities help researchers to focus their efforts
toward novel findings [12]. While the idea of dereplication is
decades old [13], it has gained more attention recently with the
increased sensitivity in analytical instruments [11], which
allows structure elucidation at nanomole scales [14-16]. In add-
ition, coupling of ultrasensitive instrument such as capillary
NMR and high-resolution MS with chromatography allows pre-
isolation compound identification [17-19], which significantly
reduces time and effort.

Despite instrumental advances that are useful for compound
identification, computational tools for dereplication are still at a
developing stage. Fortunately, natural products and metabolo-
mics share common compound identification techniques,
and they are said to be ‘two sides of the same coin’ [20]. Focusing
on detecting dynamic metabolite changes in biological fluids, re-
search in metabolomics spurred simultaneous development of
accurate computational methods for fast and high-throughput
identification of compounds from complex biological mixtures.
However, the small but significant differences between natural
products and metabolomics prevent the direct cross-utilization of
computational resources.

Table 1 shows the differences between compound identifica-
tion in natural products and metabolomics. From data perspec-
tives, there are particularly three key differences: (1) Natural
products reference libraries are larger in size than those of
metabolomics, increasing the computational demand to search
through these libraries, and the lower quality of spectral data
poses concern on the reliability of results. (2) Compound identi-
fication in metabolomics relies on ‘landmark’ peak detection
[27], often obtainable from proton-based NMR spectra such as
proton nuclear magnetic resonance (*H) and total correlation
spectroscopy [28, 29]. However, owing to structural diversity
and spectral complexity of natural products, the identification
of natural products often requires inclusion of carbon-based
NMR measurements, such as carbon-13 nuclear magnetic res-
onance (**C) and heteronuclear single quantum coherence spec-
tra [20, 22, 23]. (3) Metabolomics samples are complex biological
mixtures where the goal is to both identify and quantify metab-
olites. However, quantitative analysis of mixtures is not the cur-
rent focus of dereplication.

We review the current status of computational resources that
are or could be used as building blocks to automate dereplication
and how they can fit in the current experimental design. We dis-
cuss the overlaps and differences in computational demands of
dereplication and compound identification in metabolomics. We
start by a brief overview of the experimental design of dereplica-
tion, followed by detailed discussion on three computational as-
pects of dereplication: databases, methods and software. We
finally conclude with future perspectives.

Overview of natural products compound
identification

Figure 1 shows compound identification in natural products
without and with dereplication. The standard experimental de-
sign for natural product identification starts with purification of
bioactive compounds using bioassay-guided fractionation from
natural extracts (Figure 1IA, IB). Measured full spectral data of
the purified compounds are manually interpreted for deducing
the compound structure (Figure 1IC, ID), which is then used for
literature inquiry (Figure 1IE). With the increasing chance of iso-
lating known compounds, the time and cost are becoming un-
acceptable. Dereplication utilizes prior knowledge of previously
isolated compounds for early identification to minimize human
intervention. Ideally, preliminary experimental data, such as
source organism, bioactivity and measured spectra, are used to
filter compounds that are either previously reported or lacking
drug-like characteristics.

For researchers to integrate dereplication in their experi-
mental design, they need a full software suite for automatic
NMR processing and analysis that is linked to a reference data-
base for dereplication. The reference database should provide a
wide coverage of previously isolated natural compounds with
their source organisms and reported/predicted bioactivities. A
database query should be carried out with a sophisticated
method for compound matching integrating different types of
spectral information.

Three components are needed to develop a complete dere-
plication software: i) databases to act as reference libraries, ii)
spectral processing and searching methods to query databases
and iii) software tools for spectral preprocessing and analysis.
We discuss each component, identifying available resources
and their current shortcomings where further research is
needed. In the next section, we introduce available databases,
discussing their coverage, deposited data and relevant query
options. In the fourth section, we describe different methods as
well as software tools for spectral preprocessing and compound
identification.

Databases

The integration of chemoinformtics modeling in drug design
motivated the development of numerous databases listing
chemical compounds with their biological and physical proper-
ties. Databases relevant to natural products are already re-
viewed [30-32], while we discuss them here from a
dereplication perspective. We divide available databases into
general and natural product-specific databases (Tables 2 and 3,
respectively), and score each database with seven criteria that
are important for dereplication: (1) coverage of known natural
compounds, (2) availability of bioactivity data, (3) availability of

Table 1. Differences between compound identification in natural products research and metabolomics

Comparison criterion Natural products research

Metabolomics

Reference library size Large (>250,000) [8]
Quality of reference spectra Low [20]

Types of spectra
Structural complexity
Sample purity
Spectral comparison
Overall goal

Complex [25, 26]

Pairwise
Compound identification

Both proton and carbon-based [22, 23]

Purified or semi-purified compounds [20]

Small (few 1,000s) [21]

High [20]

Mainly proton-based [24]

Simple

Complex biological fluid mixtures [20, 24]
Pairwise or multiple (time-series)
Compound identification and quantification
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Figure 1. Compound identification in natural products without and with dereplication.
Table 2. General chemical databases
Database Web site (http://) Coverage Data content Spectral Programmatic Free? Score
searchability access I ——
#NPs # Compounds Bioactivity Source Use Download
(type) organism
BindingDB [33] www.bindingdb.org NA >450k o(protein binding) . . 5
ChEBI [34] www.ebi.ac.uk/chebi/ >25k  >42k o(all) . . . 5
ChemBank [35] chembank.broadinstitute.org NA >800k o(all) . . 5
Chembl [36] www.ebi.ac.uk/chembl/ 24K >600k o(all) . . 5
ChemIDplus chem.sis.nlm.nih.gov/ >9k  >400k o(all) . 2
chemidplus/
ChemSpider [37] www.chemspider.com >660K >14M o(all) . . 5
CSEARCH [38]  nmrpredict.orc.univie.ac.at/ NA >450k . . 3
NCI cactus.nci.nih.gov/ncidb2.2/ NA >250k . . . 5
NIAID ChemDB  chemdb.niaid.nih.gou >9k  >130k o(allergy, infectious . 2
diseases)
NMRShiftDB [39] nmrshiftdb.nmr.uni-koeln.de NA >42k . . 4
PubChem [40]  pubchem.ncbi.nlm.nih.gov NA >30M o(all) . . 5
Reaxys [41] WWwW.reaxys.com/reaxys >200k >10M o(all) . . 4
SciFinder scifinder.cas.org NA >90M o(all) . 3
SpecInfo [42] www.wiley-vch.de/stmdata/ 35k  >500k . 1
specinfo.php
ZINC [43] zinc.docking.org >180k >20M . 3
#NPs: Number of natural product compounds.
Table 3. Natural products-specific databases
Database Web site (http://) Coverage Data content Spectral Programmatic Free? Score
searchability access I —
# Compounds Bioactivity Source Use Download
organism
AntiBase [44]  www.wiley-uch.de/stmdata/ >40k o(all) . . 4
antibase.php
BACTIBASE [45] bactibase.pfba-lab-tun.org 220 o(all) . . 4
CamMedNP [46] NA 2.5k . . 3
ConMedNP [47] NA 3.2k . . 3
Dictionary of  dmnp.chemnetbase.com >30k o(all) . 3
marine NP
Dictionary of NP dnp.chemnetbase.com >250k o(all) . 3
HeteroCycles  www.heterocycles.jp/newlibrary/ >58k o(anti-microbial) . . 4
natural_products/structure
Marinlit pubs.rsc.org/marinlit/ >24k o(all) . . 4
NAPROC-13 [48] c13.usal.es >20k . . 3
NPACT [49] crdd.osdd.net/raghava/npact/ 1574 o(anti-cancer) . 2
NuBBE [50] nubbe.iq.unesp.br/portal/ 640 e(anti-microbial) . . 4
nubbedb.html
PhytAMP [51]  phytamp.pfba-lab-tun.org 273 e(anti-microbial) . . 4
SuperNatural  bioinformatics.charite.de/ >350k o(all) . 3
[52, 53] supernatural
TCM tem.cmu.edu.tw >20k o(traditional Chinese medicine) . . 5
database [54]
UDNP [55] pkuxxj.pku.edu.cn/UNPD 230k . . 4

o: Limited data.
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source organism data, (4) searchability over compounds by
measured compound spectra, (5) programmatic access through
Web services or application programming interfaces (APIs), (6)
free availability to use and (7) free availability to download.
Tables 2 and 3 demonstrate that no available databases satisfy
all seven criteria for an ideal dereplication database. Below, we
discuss these databases in terms of coverage, data content,
spectral searchability and access.

General databases

We include 15 chemical databases as general databases accord-
ing to the following criteria: (i) Cover more than 10% of already
isolated natural products; around 20,000 compounds. (ii)
Contain at least 40,000 entries including both synthetic and nat-
ural compounds. (iii) Contain information useful in dereplica-
tion, such as bioactivity, source organism or spectra (Table 2).

Regarding coverage, five databases contain more than 10
million entries. General databases provide wide coverage of nat-
ural compounds, with 11 databases containing more than
20,000 natural compounds (roughly 10% of already isolated
compounds). Despite their wide coverage, searching is not easy
to use for dereplication because synthetic compounds are
among search candidates. Seven databases have natural com-
pounds annotation, which allows users to limit their search to
natural products only.

Dereplication-relevant data-contents are two: bioactivity
and source organism. Eleven databases include biological activ-
ity. PubChem [40], ChEBML [36] and BindingDB [33] databases
contain detailed bioactivity information such as biological
mechanism and protein targets, which can be used, in conjunc-
tion with spectral information, to enhance compound identifi-
cation [56]. Regarding source organism, only two databases,
ChEBI [34] and Reaxys [41], contain this information.

While spectral searchability is important in dereplication,
searching compounds by spectral data is not the focus of gen-
eral databases, and only NMRShiftDB [39], CSEARCH [38] and
Specinfo [42] have this ability. Compounds in all 15 general
databases are searchable by similarity of structures or substruc-
tures; however, this search has strong limitations for dereplica-
tion, where molecular structures are unknown.

There are three ways to access general databases: (1) manual
access, (2) access via database download or (3) programmatic
access. Twelve databases can be accessed manually for free and
nine of them are freely downloadable. Ten databases provide
APIs to access the data though programs, which enable their
integration to user-customized analysis flows. However, pro-
grammatic access has limitations for dereplication because
either necessary data or query options are lacking.

Natural products-specific databases

We raise 15 databases that catalog molecules isolated from nat-
ural origins only, excluding those limited to primary metabol-
ites, as those are relevant only to metabolomics (Table 3). In
terms of coverage, nine specific databases exceed 20,000 entries.
Because of the coverage limitation, it is better to use multiple
specific databases for reliable dereplication. Some specific data-
bases have limited coverage because they focus on: i) particular
compound features such as compound class (PhytAMP [51] and
BACTIBASE [45]) or bioactivity (NPACT [49]), and ii) particular
compound origins such as compounds from a particular family
of source organisms (CamMedNP[46] and ConMedNP [47]) or
geographic location (NuBBE [50] and TCM [54]).

Despite their limited coverage, specific databases contain
bioactivity and source organism information, useful in derepli-
cation. Eleven specific databases contain bioactivity data.
Typical examples are NuBBE [50] and NPACT [49], which provide
effective compound concentrations of different bioactivities for
each entry. All specific databases have source organism infor-
mation, except for SuperNatural [52, 53], NPACT [49] and
NAPROC-13 [48].

Spectral searchability is limited in specific databases
because of the scarcity of spectral data. Only three databases
have spectral searchability, and only one database, NAPROC-13
[48], is freely accessible but limited to **C spectra only.

Regarding database access, 11 specific databases can be
manually searched, seven of which are freely downloadable.
Specific databases are usually in-house developed and all of
them do not provide programmatic access to the data, limiting
automatic search and integration to other software.

Methods and software

This section describes computational methods and software
tools used as parts of natural product dereplication process.
Table 4 summarizes two main steps of dereplication: spectral
preprocessing, and compound identification. First, spectral pre-
processing involves reformatting and denoising of the acquired
spectra to alleviate the instrumental and experimental discrep-
ancies [27, 57]. Second, compound identification uses prepro-
cessed spectra and compares them to a reference database. To
realize automatic and fast dereplication, each step needs to be
carried out efficiently with minimal human intervention. Table
5 lists, to the best of our knowledge, currently available software
tools for these steps, comparing the tools according to
functionalities.

Note that while we focus here on software for spectral pre-
processing and compound identification, natural product dere-
plication needs additional tools to manage and visualize
chemical structures and spectra. For example, structures of
chemical compounds are usually represented as SDF or MOL
files, and software tools, such as Open Babel toolbox [69] and
ChemmineR [70], rcdk [71] and Rcpi [72] R packages, are needed
to handle these files and pass the data to the dereplication soft-
ware for processing or visualization. For result visualization,
Java and javascript libraries, such as JSpecView [73], JSME [74]
and MarvinJS [75], can offer in-browser chemical structure and
spectral visualization for Web applications.

Spectral preprocessing

We categorize preprocessing methods into three main steps:
file format conversion, baseline correction and alignment. We
first discuss each step, and demonstrate baseline correction
and alignment on example spectra ("H NMR spectrum of stig-
masterol in Figure 2). We finally summarize available software
tools.

File format conversion

While the acquired spectra are initially stored as proprietary
data formats that are specific to each instrument, converting
them to a common instrument-independent format ensures
easier data exchange and wider compatibility. For NMR spectra,
JCAMP-DX [76], NMRPipe [65] and Sparky [77] are among the
most used file formats for describing spectral information of
small molecules. JCAMP-DX [76] provides a simple and human-
readable format, and allows additional labels to describe
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Table 4. Analysis flow of spectra from acquisition to compound
identification

Spectral File format ¢ JCAMP-DX
preprocessing  conversion o NMRPipe
o Sparky

Baseline correction 1. Baseline recognition
e Derivative functions
o Wavelet-based

2. Baseline modeling
e Polynomial
o Regression
e Smoothing

3. Baseline subtraction
o FFT alignment
o Multiple-dimension

Alignment

Compound Data reduction < Peak lists
identification o Peak picking
o Numerical vectors
e Binning

o Feature extraction
o Sliding window
o PCA
» Trees
Spectral comparison < Peak lists
e Tanimoto coefficient
e Jaccard similarity
O Numerical vectors
o Correlation-based
o Dot product
o Pearson’s correlation
o Spearman’s correlation
o Weighted
cross-correlation
o Partial and semi-partial
correlation
¢ Distance-based
o Absolute value distance
o Euclidean distance
» Trees
o Tree-based comparison
o Identity search
¢ Ranking search
o Interpretative search

Database search

experimental conditions and parameters. However, representa-
tion of multi-dimensional NMR spectra in JCAMP-DX is not
standardized. NMRPipe [65] and Sparky [77] have been used in
Web applications [78, 79] for their strong standardization and
the ability to represent multi-dimensional NMR spectra.

Current NMR file formats mainly have the following three
limitations for dereplication. First, current file formats do not
contain structures of measured compounds, which prevent as-
signing spectral peaks to corresponding atoms. We have to in-
clude additional files for compound structure and peak
assignment information [80, 81], which cannot be linked easily
with spectral files. Second, one-dimensional (1D) NMR and two-
dimensional (2D) NMR spectral data of the same sample cannot
be linked with each other in current file formats. Third, current
file formats are still insufficient to fully represent measure-
ments and experimental parameters in high-throughput stud-
ies [80]. CCPN [82, 83] and STAR [84-86] provide different
formats that can be used for high-throughput studies, but are
tailored for protein NMR experiments. A suitable file format for
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natural product dereplication is still needed to overcome the
above three limitations.

Baseline correction

Removal of baseline drifting is crucial to remove noise and
artifacts resulting from different measurement conditions.
Generally, baseline correction has three steps, baseline recogni-
tion, modeling and subtraction. First, baseline recognition
distinguishes peak regions from baseline points, exploiting
the fact that peak regions have higher variation in intensity.
Higher variation regions are detected using spectrum deriva-
tives [87] or wavelet transformation [88-91]. Second, baseline
modeling estimates a curve based on baseline points, by linear
interpolation or non-linear approximations like polynomial
fitting [92, 93], LOcally Weighted Scatterplot Smoothing
(LOWESS) and quantile regressions [94-98] and Whittaker
smoother [88, 99]. Finally, in baseline subtraction, the estimated
baseline curve is subtracted from the spectrum, leaving only the
peak signals.

In natural product dereplication, baseline correction is a
minor step compared to metabolomics because of two main dif-
ferences: (i) As dereplication currently focuses on compound
identification rather than quantification, accurate baseline esti-
mation is less significant [20]. (ii) Dereplication is usually per-
formed on purified compounds where spectra are less crowded
than those of biological mixtures. Therefore, simple polynomial
fitting is usually preferred for baseline correction, instead of
more computationally demanding techniques such as LOWESS
and quantile regressions and Whittaker smoother. In our ex-
ample, the baseline is estimated as a third-order polynomial
function (Figure 2).

Alignment

Alignment of spectra is a process to alleviate the effect of ex-
perimental conditions on peak positions by shifting data points
to match a reference spectrum [24, 57]. Spectral alignment and
relevant software tools are already reviewed in detail [57], and
so we only describe alignment here briefly. Alignment is
performed for quantitative comparison between multiple spec-
tra of different samples that have similar chemical compos-
itions, and therefore, it is a standard manner for time-series
NMR spectra in metabolomics. Using the same concept, align-
ment can be applied in dereplication when spectra for different
fractions of the same extract are compared [100]. Figure 2 shows
how alignment removes subtle chemical shift differences in the
spectra of two structurally similar compounds, cholesterol and
stigmasterol, increasing the overall similarity between the two
spectra.

Software summary for spectral preprocessing

Table 5 shows that out of 16 currently available software, 3
steps in spectral preprocessing, i.e. file format conversion, base-
line correction and alignment, are implemented in 12, 13 and 9
software tools, respectively, meaning that baseline correction is
the most implemented. Six software tools, ACD Labs, Automics
[58], Chenomx NMR suite, MestreNova, MVAPACK [62] and
PERCH, implement all three steps, of which Automics and
MVAPACK are freely available, making them most useful for
spectral preprocessing. Six other tools implement two steps,
and the remaining four tools (all are R packages) specialize in
only one step.
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Table 5. Software tools with a potential role in dereplication

Software Software type  Spectra type GUI Spectral preprocessing Compound identification Free? Score

File Baseline  Alignment Peak Binning Feature

Format Correction Picking Extraction

Conversion
ACD Labs Desktop NMR (1D, 2D), MS e . . . . 4
Automics [58] Desktop NMR . . . . . . . . 7
BATMAN [59] R package NMR . . . e 4
ChemoSpec [60] R package Any . . . 3
Chenomx Desktop NMR (1D, 2D) ° . ° . ° . 5

NMR suite
cuteNMR Desktop NMR ° . . . e 4
MestreNova Desktop NMR (1D, 2D), MS o . . . . 4
mSPA [61] R package Any . . 2
MVAPACK [62] Octave package NMR (1D, 2D) . . . . . . . 7
mylims.org [63] Web NMR, MS . . . o 4
Nmrglue [64] Python package NMR (1D, 2D) . . . e 4
Nmurpipe [65] Desktop NMR . . . . . 5
NMRS [66] R package NMR . . 2
PERCH Desktop NMR (1D, 2D) ° . . . . 4
mmr [67] R package NMR (2D) . . . . . . 5
speagq [68] R package NMR . . . 2
GUI: Graphical User Interface.
A i baseline
—_— >

o A _h 'J'JJAJ\ .

—— : Baseline correction L
4o Similarity: 0.268" - Similarity: 0.423*
Stack
Spectra ? u
i \ n, | |
e L e 'l
& ML. >
o T | M _A—LJJLu i
. — Estimated baseline Chamica she Alignment  + 3 3 i
! * Pearson’s correlation
| . | -
i sl
: T I T .
A M v, Wil

Baseline comrection

Figure 2. Spectral preprocessing. *H NMR spectra of cholesterol and stigmasterol, two common and structurally similar natural compounds, are used for demonstra-
tion. The raw NMR files were downloaded from HMDB [21] and converted to JCAMP-format DX using Mestrenova. Baseline estimation was performed in R using third-
order polynomial fitting. The baseline-corrected spectra were stacked, and then aligned using Mestrenova, showing higher similarity (Pearson’s correlation of 0.423)
than before alignment (0.288). A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.

Compound identification

For compound identification, preprocessed spectra are con-
verted into different representations to be compared against
reference spectra in a computationally efficient manner, to find
compounds with the highest spectral similarity. To carry out
compound identification, three steps are required: data reduc-
tion, spectral comparison and searching databases. We explain
each of these three below.

Data reduction

Spectral comparison of raw spectra needs long computation
time because each spectrum has a large number of data points
(more than 20,000 points for "H NMR [24]), where each point has

a position (chemical shift) and an intensity. To reduce computa-
tion time, we need methods to reduce data size without sub-
stantial loss of information. Data reduction transforms spectral
data into peak lists, numerical vectors or trees. We describe the
characteristics of each of these three representations.

Peak lists: Spectra are reduced to peak lists by peak picking
[101-103], which greatly simplifies the spectra to a handful of
peak positions and their intensities. Limitations of peak picking
arise if the spectrum contains broad or overlapped peaks, such
as crowded 'H NMR spectra, in which important peaks can be
missed.

Numerical vectors: Spectra can be reduced to numerical vec-
tors of the same size by binning, sliding window or principal
component analysis. First, binning [104-106] divides the spec-
trum into intervals and the total intensity in each interval is
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extracted. While binning keeps representative information
about the spectrum, a peak may be split into two bins if the bin
boundary lies on a peak center, which misrepresents the peak
as shown in Figure 3-2A. So, adaptive binning changes bin
boundaries to prevent overlap with peak centers [104, 106].
Second, sliding window divides the spectrum into fix-sized but
overlapped intervals [107]. Third, principal component analysis
reduces spectra by transforming the original data space into a
lower dimension space [108].

Trees: A spectrum is transformed into a tree by assigning
peaks to end nodes through recursively dividing the spectrum
into subspectra at mass centers [109, 110] (Figure 3-3A, B). The
resulting tree has spectra mass centers as branching nodes and
peaks as end (leaf) nodes, which retains information about peak
positions as well as their hierarchy.

Two factors are important in data reduction for natural
product dereplication: i) Type of measured spectra: NMR spectra
vary in how sharp peaks are and the propensity for peaks to
overlap. Sharp peaks in **C NMR spectra are unlikely to overlap
and so peak lists are suitable. In contrast, *H NMR peaks tend to
heavily overlap, especially that of complex mixtures and in con-
densed methylene regions, and so binning or trees are pre-
ferred. ii) Spectral comparison measure suitable for the
representation (described in the next section).

Spectral comparison

Spectra are compared using a similarity measure that reflects
the structure similarity of the corresponding compounds. The
choice of the similarity measure depends on the data represen-
tation, determined by the data reduction method (described in
the previous section). We discuss available similarity measures
for each representation.

Peak lists: When spectra are reduced to peak lists, which are
of different sizes, they are represented as sets. Comparing two
sets of peaks requires two steps: (1) Matching of set members,
to produce one-to-one mappings between peaks of the query
and reference sets. First, a list of matching candidates for each
peak is narrowed to peaks whose positions lie within a defined
threshold. A threshold can be either a fixed window (hard
thresholding), which is chosen manually, or defined statistically
using Bayesian [111, 112] and probability-based [113, 114] mod-
els (soft thresholding), which are more flexible. Second, match-
ing peaks are chosen from the candidate list by either i)
selecting the nearest peak, or ii) maximum bipartite matching
[115], which maximizes the number of pairs between peaks of
the two sets. (2) Measuring the overlap between two sets, which
is computed by set similarity measures, typically Jaccard’s simi-
larity and Tanimoto’s coefficient [116-118].

Numerical vectors: Numerical vectors have the same dimen-
sion and a typical way to compare them uses a correlation
or distance-based similarity measure such as inner product
[119-121], Euclidean distance [122-124] or difference in absolute
value [125, 126]. Among the three measures, inner product was
reported to outperform the other two measures [127]. Measures
combining both correlation and distance-based similarities,
such as partial correlation [128] and composite similarity meas-
ures [129], have been shown to perform better than a single
measure [130, 131].

Trees: Trees are compared by taking into account both peak
positions (node position) and their hierarchy (children nodes)
[109, 110].

Computational efficiency: Applying spectral comparison to
large databases requires efficient computation of similarity
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scores. The speed of computing similarity scores for each repre-
sentation is affected by two factors: (1) number of data points in
spectral representation and (2) computational complexity of
comparing two spectra. First, number of data points varies
between spectra owing to different spectral features or data
reduction parameters. The number of data points in peak lists
and trees depends on the number of peaks, while in numerical
vectors, it is equal to the number of bins. The typical size of nat-
ural product compound spectra is tens for peak lists, and 250 for
numerical vectors (chemical shift range: 0~10ppm, bin size:
0.04 ppm). Second, the computational complexity is determined
by the number of computational operations for comparing two
spectra of N data points, which is in the order of N° for peak
lists, and N and N logN for numerical vectors and trees, respect-
ively. Theoretically, for a similar number of data points, numer-
ical vectors are the fastest to compare, followed by trees and
peak lists.

Searching databases

Three database search paradigms are useful in dereplication: (1)
identity, (2) ranking and (3) interpretative; each search paradigm
produces a different output format [127, 132]. We explain each
paradigm below.

Identity search: Identity search returns a single compound
with a spectrum that is equivalent to the query spectrum [111,
127]. Identity search requires no manual investigation and so it
can be very useful in automating dereplication. However, iden-
tity search has two limitations: (1) Searching small-coverage
databases may return empty results, if the exact spectrum is
not in the database. (2) Setting strict equivalence criteria may
miss spectra that are affected by variations in experimental
conditions or inadequate preprocessing.

Ranking search: Ranking search returns a ranked list of com-
pounds with spectra closest to that of the query by computing
similarity scores the query spectrum and all spectra in the data-
base [125]. By investigating common substructures of highly
similar compounds in the list, we can deduce chemical class or
functional groups of the query compound. Similarity scores can
also be computed using a subset of the query spectrum, allow-
ing users to focus on distinctive peaks. One limitation for rank-
ing search is that deducing chemical classes and functional
groups still requires manual investigation, which hampers
automatic dereplication.

Interpretative search: Interpretative search returns a list of
matching fragments by assigning peaks from the query spec-
trum to connected fragments of reference compounds [115,
133]. The output fragments, which belong to different reference
compounds, can then be combined to deduce the query com-
pound structure and so interpretative search can identify novel
compounds that are not included in the reference database.
Currently, interpretative search is not applicable to 'H spectra
because of the sensitivity of chemical shifts to spatial inter-
actions [115] and because peak overlap prevents spectral peaks
to be assigned to corresponding atoms.

Software summary for compound identification

For data reduction, we focused on three spectral representations:
i) peak lists obtained by peak picking, ii) numerical vectors ob-
tained by binning and feature extraction and iii) trees. Table 5
shows that peak picking is the most implemented method, avail-
able in 13 out of 16 software tools, followed by binning and then
feature extraction, available in six and two tools, respectively.
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Figure 3. Data reduction of spectra. 'H and *>C NMR spectra of camphor, a natural compound, demonstrate the effect of each data reduction method on different types
of spectra. Peak picking reduces the *3C spectrum to a few peaks (2A), but fails with the 'H spectrum (1A), as resonance coupling generates numerous overlapping
multiplet peaks. Binning produces in a large vector (1532 bin) in the **C spectrum and a small one in the *H spectrum (47 bins). Both spectra are reduced to relatively
few nodes when represented as trees. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.

No software tools implement tree representation of spectra; how-
ever, the pseudocode is available [109]. Automics [58] and
MVAPACK [62] are the only tools implementing the three data re-
duction methods. rNMR [67], NMRPipe [65] and PERCH have both
peak picking and binning functionalities.

Spectral comparison methods, such as inner product and
partial correlation, are available in statistical software frame-
works, such as R and Matlab.

Finally, among database search paradigms, ranking search is
implemented in spectral databases, such as NMRShiftDB [39]
and CSEARCH [38], because chemical class or functional groups
can be deduced by investigating the ranked compound list.

V- Future perspectives

Despite the abundance of computational resources that are use-
ful for dereplication, we need to overcome several challenges to
realize the aspired automation. We discuss four proposed solu-
tions to existing challenges that can enhance the speed and
quality of natural products dereplication results.

Enriching databases using automated machine leaning
methods

The deficiency of necessary data, namely, measured spectra
and source organisms, presents a challenge to the development
of a dereplication database, being summarized into two points:
(1) The scarcity of measured spectra prevents spectral search-
ability from producing reliable results. (2) The absence of source
organisms data prevents their use to limit dereplication candi-
dates. Two machine learning-derived approaches will provide a
fast and automated way to add data to databases and complete
missing data: spectral prediction and literature text mining.
First, compound spectra can be predicted from existing spectra
on the basis of compound structural similarity [134]. Several
machine learning algorithms have been proposed to predict
NMR spectra [135-137], of which prediction accuracy increases
with training data size [138]. Similar algorithms have also been
developed for other types of spectra, such as fragmentation pat-
tern in MS spectra [139-141], ultraviolet spectra (UV) [413] and
chromatographic retention index [143-145]. Comparison and ac-
curacy assessment of NMR prediction algorithms are reviewed

in [146-148]. Second, text mining of chemical information [149,
150] can automatically extract compound associated data such
as NMR assignments and source organisms from the literature.

Developing software suite from building blocks

The wide use and integration of dereplication to current experi-
mental design is hampered by the unavailability of open-source
software to process NMR spectra, to link and to summarize
information across all submitted spectra. While all steps for
dereplication are implemented in software packages (Table 5),
the dereplication process requires the use of different tools and
familiarity of programming languages. To accelerate dereplica-
tion, a software suite combining available software packages
through a unified graphical interface that can be used intui-
tively by experimental researchers on natural products is
needed.

Integrating different spectral types

Relying on NMR data only for compound identification becomes
insufficient as molecular complexity [151, 152] increases, as
exemplified by fatty acids and peptides. The integration of dif-
ferent spectral data into dereplication can resolve structural
ambiguities in these chemical classes. Several studies in dere-
plication showed promising results by integrating MS fragmen-
tation with UV spectra [153, 154], and in combination with NMR
spectra [155, 156]. However, current studies have two limita-
tions: (1) Other spectral types, such as chromatographic reten-
tion times, can differentiate between compounds that are
otherwise similar. While these spectra utilized in metabolomics
[61, 128, 157], they are not yet incorporated in dereplication. (2)
Similarity scores between query and database compounds are
calculated based on only one spectral type, and candidate struc-
tures are then filtered using the other spectra. Calculating simi-
larity scores based on all available spectra is still lacking.

Sorting databases for efficient search

Calculating similarity scores between a query spectrum and a
database containing hundreds of thousands of spectra can be
computationally intensive. Classifying database compounds
using molecular characteristics such as complexity [152, 158],
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common substructures [17, 159] have proved useful in efficient
compound identification [17, 18] and mining of chemical data-

ba

ses [160]. Applying similar strategies to spectral databases

presents promising possibilities.

Key Points

* Dereplication is the process of rapid identification of
previously isolated natural products compounds,
which increases the chance of isolating new com-
pound, and accelerates drug discovery therefrom.

* Automating dereplication requires the utilization and
integration of diverse computational resources.

* We review the currently available computational re-
sources that are useful in dereplication by categorizing
them into databases, methods and software.

* We conclude by discussing current computational
challenges to automating dereplication with proposed
solutions.
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