
1

Briefings in Bioinformatics, 22(5), 2021, 1–11

https://doi.org/10.1093/bib/bbaa406
Problem Solving Protocol

XGSEA: CROSS-species gene set enrichment analysis
via domain adaptation
Menglan Cai, Canh Hao Nguyen, Hiroshi Mamitsuka and Limin Li
Corresponding author: Limin Li, Xi’an Jiaotong University, 28 Xianning W Rd, Jiaoda Commerce Block, Beilin, Xi’an 710049, China.
Tel.: +86 029 82660967; E-mail: liminli@mail.xjtu.edu.cn

Abstract

Motivation: Gene set enrichment analysis (GSEA) has been widely used to identify gene sets with statistically significant
difference between cases and controls against a large gene set. GSEA needs both phenotype labels and expression of genes.
However, gene expression are assessed more often for model organisms than minor species. Also, importantly gene
expression are not measured well under specific conditions for human, due to high risk of direct experiments, such as
non-approved treatment or gene knockout, and then often substituted by mouse. Thus, predicting enrichment significance
(on a phenotype) of a given gene set of a species (target, say human), by using gene expression measured under the same
phenotype of the other species (source, say mouse) is a vital and challenging problem, which we call CROSS-species gene set
enrichment problem (XGSEP). Results: For XGSEP, we propose the CROSS-species gene set enrichment analysis (XGSEA), with
three steps of: (1) running GSEA for a source species to obtain enrichment scores and p-values of source gene sets; (2)
representing the relation between source and target gene sets by domain adaptation; and (3) using regression to predict
p-values of target gene sets, based on the representation in (2). We extensively validated the XGSEA by using five regression
and one classification measurements on four real data sets under various settings, proving that the XGSEA significantly
outperformed three baseline methods in most cases. A case study of identifying important human pathways for T -cell
dysfunction and reprogramming from mouse ATAC-Seq data further confirmed the reliability of the XGSEA. Availability:
Source code of the XGSEA is available through https://github.com/LiminLi-xjtu/XGSEA.
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Introduction
Due to recent advancement of modern experimental technolo-
gies, currently we have a massive amount of basic biological
data. For example, next-generation sequencing technology has
made sequencing faster and lower-cost, generating an incredible
number of sequences. This situation makes bioinformatics tools
more promising in retrieving biological knowledge from the data.
For example, gene set enrichment analysis (GSEA) [1] has been
well used in biology and related areas, which can rank gene
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set(s) most relevant (precisely, statistically significant) to binary-
labeled gene expression measurement. However, GSEA needs
gene expression data labeled binary, such as control and case,
and is heavily affected by missing data.

Indeed gene expression are now measured by more speedy
and precise techniques like RNA-Seq than cDNA microarray,
while measuring gene expression is still costly both on money
and time. Existing expression data often have strong bias in
measured organisms or species. Model organisms, such as
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Mus musculus, Caenorhabditis elegans, Arabidopsis thaliana, etc.,
are well measured, while data on minor species are relatively
insufficient. Additionally, human gene expression data are
unable to be measured under some specific conditions, due to
high risk of direct experiments on human, such as non-approved
treatment or gene knockout. On the other hand, mouse is usually
used to study human disease [2, 3] because of lower cost, lower
risk and relatively strong homology relationship with human
[4]. However, there exists essential differences between mouse
and human [5–8]. Effective treatments developed by mouse
data often fail in human clinical trials [9, 10]. Thus it would
be strongly expected to develop a method to bridge the gap
between expression data of different species, such as human
and mouse.

We consider a problem of predicting enrichment significance
of given gene sets of one species (such as human) without
gene expression, by using sufficient gene expression data of
another species (such as mouse). The assumption behind this
problem is that both expression data are measured under the
same phenotype. We call this problem cross-species gene set
enrichment problem (XGSEP). Assume that we have enough data
behind XGSEP for human and mouse (more generally target and
source), except target expression data. A gene set, either from
mouse or human, could be represented as a binary annotation
vector with dimension being the number of all genes in the
expression data, representing whether the corresponding gene
is in the gene set. The enrichment significance (such as p-value)
of a source gene set S with an annotation vector xs can be
computed by traditional GSEA. The goal of XGSEP is to predict
the enrichment significance for a target gene set T with an anno-
tation vector xt, which might have a different dimension from xs

since the number the total genes for target (human) and source
(mouse) are different. Note that the sequence homology between
target genes and source genes is assumed to be represented by
binary matrix M, which should be important information for the
prediction.

A naive idea for XGSEP would be to first find a source gene
set xs, most homologous to genes in a particular target gene
set xt, by using M. Then, GSEA is run over source expression
data and xs. The resultant p-value for xs is considered as a
prediction of the enrichment p-value for xt. The method is simple
and fast, but the homology relationship between source and
target is often complex, and thus homologous source gene set
xs cannot be clearly defined. Also using M directly would be not
robust.

Our idea for XGSEP is, rather than focusing on only one gene
set, to consider many gene sets at once and train a predictive
machine learning model by these gene sets. Suppose that we
have source gene sets S1, . . . , Sm and target gene sets T1, . . . , Tn,
with annotation matrices Xs = [x1

s , . . . , xm
s ] and Xt = [x1

t , . . . , xn
t ],

respectively. Then the enrichment p-values for the source gene
sets can be computed beforehand (by traditional GSEA). The
goal of XGSEP is to predict enrichment p-values for target gene
sets x1

t , . . . , xn
t . Note that Xs (training data) and Xt (test data) are

different in size of rows (number of genes), and thus it is difficult
to compare the two matrices directly, meaning that a regular
machine learning model such as a classifier generated by Xs

cannot be run directly over test data Xt. Thus, a further idea is
to transform both the target and source species into a common
space so that the target and source genes can be compared. How-
ever, this idea cannot be realized by regular machine learning
models by the above problem of difference in size between train-
ing and test data. We solve this problem by domain adaptation,
transfer learning between two domains: target and source. In

general domain adaption, a machine learning model, trained by
a larger amount of labeled samples from a source domain, is
applied to a target domain with very few or no labeled samples
[11]. This is exactly the same situation of XGSEP. A common way
of domain adaptation methods is to train a model so that the
model can reduce the probability gap between two domains. A
possible measure for the probability gap, i.e. the difference of
two data distributions, is maximum mean discrepancy (MMD)
[12–15]. We will borrow the idea of domain adaptation and MMD
to solve XGSEP.

We propose a method, XGSEA, standing for Cross-species
Gene Set Enrichment Analysis (XGSEA). The XGSEA solves XGSEP
by three steps: (1) we run GSEA over the source gene sets to
obtain gene enrichment scores Es and gene enrichment signifi-
cance vs. (2) We first define pairwise similarities among gene sets
based on M, and then propose a MMD-based domain adaptation
method to project Xs and Xt into a latent common space with
affine mappings Ps and Pt to obtain Zs and Zt, respectively, so
that (i) the probability gap between Zs and Zt in the latent space
is minimized and (ii) Ps and Pt are smooth over the connection M
between source and target gene sets.

By solving this optimization problem, we can obtain the
optimal new representations Zs and Zt for source and target gene
sets, respectively. (3) We train a regression model by (Zs, Es) and
run the trained model over Zt to predict enrichment scores Et

for target gene sets and finally p-values vt with the principle of
null hypothesis. Schematically, we may be able to explain our

idea by using arrows: Xs
Ps→ Zs and Xt

Pt→ Zt, so that the adaptive
representations Zs and Zt for source and target gene sets should
have the smallest distribution divergence and preserve their
pairwise homology similarities.

The contribution of this work can be summarized into
three-fold: (1) we define a problem, XGSEP, which is helpful
for understanding a particular phenotype (label) of a species
with too limited data to run GSEA. (2) We propose a three-step
method called XGSEA for XGSEP through domain adaptation
that projects gene sets from two species into a common latent
space. This projection is formulated as a nonlinear optimization
problem, by which we can estimate the latent space and also
estimate the enrichment scores and p-values of target gene sets
through the latent space. Furthermore, the computational com-
plexity of the optimization problem is low enough so that the
computation of the XGSEA becomes feasible over regular gene
annotation matrices. (3) We empirically validated the XGSEA
by using four different real phenotypes with expression data.
The experimental results show that the XGSEA significantly
outperformed three baseline methods under various settings.
The advantage of the XGSEA was further confirmed by a case
study of finding significant unknown human pathways for T-cell
dysfunction and reprogramming from a mouse ATAC-Seq data
set.

Method: CROSS-species Gene Set Enrichment
Analysis (XGSEA)
To the best of our knowledge, there is no existing work for
XGSEP. A similar problem setting might be cross-species gene set
analysis (XGSA) [16]. The goal of the XGSA is different with our
XGSEP. XGSA aims to compare a gene set from one species with
a gene set from another species. That is, XGSA directly examines
if two gene sets (from two different species) are significantly
different or not, only through the homology between genes in
given two gene sets.
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Problem definition

We have two species, source and target. Let A = {a1, · · · , ap} be a
source (say mouse) gene set, and B = {b1, · · · , bq} be a target (say
human) gene set. Let M ∈ R

p×q be a binary matrix of sequence
homology, where the (i, j)-element M(i, j) is one if source gene ai

is homologous to target gene bj; otherwise zero. Suppose that
we have gene expression matrix Gs with phenotype vector ys for
source genes only, meaning that we can run GSEA over Gs and
ys to compute gene set enrichment significance for an arbitrary
source gene set.

Suppose further that we have multiple gene sets for both
source and target. Let S = {S1, · · · , Sm} be m source gene sets and
T = {T1, · · · , Tn} be n target gene sets. We define an annotation
matrix for source gene sets S (for columns) by A (for rows) as
Xs = [x1

s , · · · , xm
s ] ∈ {0, 1}p×m for source gene sets S1, · · · , Sm, where

the i-th element of xj
s is one if gene ai is in gene set Sj and

zero otherwise. Similarly, let Xt = [x1
t , · · · , xn

t ] ∈ {0, 1}q×n be the
annotation matrix for target gene sets T . Then the problem,
XGSEP standing for CROSS-species Geneset Enrichment Problem,
is, given Gs, ys, Xs, Xt and M, to estimate the enrichment p-value of
each gene set in T with respect to the same phenotype of ys. We
propose our method XGSEA, standing for CROSS-species Gene
Set Enrichment Analysis, to solve XGSEP by using three steps.
Figure 1 shows a schematic picture of the three-step procedure
of the XGSEA. Below, we will explain each of these three steps in
detail.

Step 1: gene set enrichment analysis for source

Since gene expression Gs and phenotype ys are both available
for the source side, we can directly use regular GSEA to obtain
p-values, vs,1, · · · , vs,m for S1, · · · , Sm, respectively. In fact, p-value
vs,i corresponds to null hypothesis Hs,i

0 : gene set Si has no associ-
ation with phenotype ys (against the entire set of genes) and can
be computed by the following procedure [1].

1a. Compute enrichment score E0
s,i for gene set Si by using gene

expression Gs and phenotype ys.
1b. Permute the entries in ys and recompute the enrichment

score for gene set Si. Repeat this step B times to generate
an empirical null distribution of the enrichment score: ENULL

with E1
s,i, · · · , EB

s,i.
1c. Compute empirical, nominal p-value vs,i for Si from null

distribution ENULL by using the positive (or negative) region
of the distribution corresponding to observed enrichment
score E0

s,i.

For source gene set Si, we can compute B+1 enrichment
scores E0

s,i, · · · , EB
s,i in 1a and 1b to compute p-value vs,i in 1c. Sim-

ilarly for target gene set Tj, we can first predict B+1 enrichment
scores E0

t,j, · · · , EB
t,j for target gene set Tj and then p-value vt,j in 1c.

Step 2: domain adaptation for source and target gene
sets

We project the target and source genes into a common space, to
maximally use the information from the source gene side for the
target gene sets. The objective function is formulated as follows.

We project Xs and Xt to a common subspace in R
d by using

affine mappings Ps ∈ R
p×d and Pt ∈ R

q×d, respectively, such that
Zs = [z1

s , · · · , zm
s ] = PT

s Xs and Zt = [z1
t , · · · , zn

t ] = PT
t Xt.

In this process, we can set the following two reasonable
objectives:

(1) Probability divergence between Zs and Zt should be small.

(2) Pairwise distances among the gene sets in Zs and Zt should
be preserved.

For the first objective, we use MMD [12, 14] to measure the
divergence. An empirical estimate of MMD can be defined as
follows:

D(Zs, Zt) = ‖ 1
m

m∑
i=1

φ(zi
s) − 1

n

n∑
i=1

φ(zi
t)‖2

H,

=
m∑

i,j=1

k(zi
s, zj

s)
m2

+
n∑

i,j=1

k(zi
t, zj

t)
n2

− 2
m,n∑
i,j=1

k(zi
s, zj

t)
mn

= trace(KL), (1)

where φ(·) is a mapping to reproducible kernel Hilbert space H,
k(·, ·) = (φ(·), φ(·)) is the kernel associated to this mapping, and

K =
[

Kss Kst

Kts Ktt

]
∈ R

(m+n)×(m+n), (2)

where the (i, j)-element of Kab is

Kab(i, j) = k(zi
a, zj

b), a, b ∈ {s, t}, i = 1, · · · , m, j = 1, · · · , n,

and the (i, j)-element of L is

L(i, j) =

⎧⎪⎨⎪⎩
1/m2 i, j ∈ {1, · · · , m};
1/n2 i, j ∈ {m + 1, · · · , m + n}
−1/mn otherwise.

(3)

For the second objective, we can first define the pairwise
homologous similarity between source gene sets S1, · · · , Sm and
target gene sets T1, · · · , Tn from given data directly as follows:

Wss(i, j) = min{ |Si∩Sj |
|Si | ,

|Si∩Sj |
|Sj | } i, j ∈ {1, · · · , m};

Wtt(i, j) = min{ |Ti∩Tj |
|Ti | ,

|Ti∩Tj |
|Tj | } i, j ∈ {1, · · · , n};

Wst(i, j) = min{ |Tj∩S̃i |
|Tj | ,

|Si∩T̃j |
|Si | } i ∈ {1, · · · , m},

j ∈ {1, · · · , n}, (4)

where |A| is the number of genes in set A, S̃i = φM(Si) ⊂ T is the
set with the target genes homologous to the source genes in Si,
and T̃j = φM(Ti) ⊂ S is the set with the source genes homologous
to the target genes in Tj. The projections Ps and Pt should be

smooth over homologous similarity matrix W =
[

Wss Wst

WT
st Wtt

]
so that Zs and Zt could preserve the gene sets’ pairwise distances
captured by W.

Thus, the divergence D in Equation (1) should be minimized,
being regularized by the smoothness of the projections Ps and Pt

over similarity matrix W. Overall the objective function can be
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Figure 1. Flow chart of the XGSEA: we (A) compute B+1 enrichment scores and p-values for each source gene set by GSEA, where B is the number of permutation, (B)

obtain new representations for all source and target gene sets by domain adaptation and (C) predict enrichment p-values for target gene sets by a regression model

based on the new representations.

given as follows:

min
PT

s Ps+PT
t Pt=I

D(PT
s Xs, PT

t Xt) + λ(
1
2

m∑
i,j=1

Wss(i, j)‖zi
s − zj

s‖2
2

+
m,n∑
i,j=1

Wst(i, j)‖zi
s − zj

t‖2
2 + 1

2

n∑
i,j=1

Wtt(i, j)‖zi
t − zj

t‖2
2), (5)

where the constraint PT
s Ps + PT

t Pt = I is used to avoid trivial
solutions.

The model (5) is rewritten in a simpler form and then can be
solved by the optimization algorithm on Grassmann manifold.
The details of our optimization algorithm and our computational
complexity reduction strategy are given in Section 1.1 of the sup-
plementary material. Algorithm 1 in the supplementary material
shows the pseudo code for the optimization algorithm.

Step 3: enrichment scores and p-values for target

In order to estimate p-values for target gene sets from adaptive
representations Zs and Zt (obtained in Step 2), we present the
following three methods:

XGSEA-D: we train parameter α in logistic regression by source:

logit(vs,i) := log(
vs,i

1 − vs,i
) =

d∑
l=1

α(l)zi
s(l) + εi, fori = 1, · · · , m,

and predict p-values for target using z1
t , · · · , zn

t , directly.
XGSEA-E (enrichment scores and p-values): We already compute
enrichment score Eb

s,i of source gene set Si at the b-th permuta-
tion (b = 0 means no permutation) in Step 1. For any b ∈ {0, · · · , B},
we train a linear regression model for enrichment scores from
source gene sets:

Eb
s,i =

d∑
l=1

βb(l)zi
s(l) + εi, fori = 1, · · · , m,

and predict enrichment scores Eb
t,j for target gene sets using zj

t.
We further estimate enrichment p-values for target gene sets by
using 1c of GSEA in Section ’Step 1: gene set enrichment analysis
for source’.
XGSEA-E± (two enrichment scores and p-values): we train two
linear regression models for positive and negative enrichment
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scores, separately as follows:

Eb
s,i = ∑d

l=1 γ +
b (l)zi

s(l) + εi, ifEb
s,i ≥ 0

Eb
s,i = ∑d

l=1 γ −
b (l)zi

s(l) + εi, ifEb
s,i < 0,

for i = 1, · · · , m. We then compute distances ‖zj
t − z−

t ‖2 and
‖zj

t − z+
t ‖2, where z+

t and z−
t are the centers for Zs with positive

and negative enrichment scores, respectively, and then assign
the positive model to target gene set zj

t if the positive distance
is smaller; otherwise the negative model. We predict the enrich-
ment scores of target gene sets for each b and estimate p-values
by using 1c of GSEA in Section ’Step 1: Gene set enrichment
analysis for source’.

More details of Step 3 can be found in Section 1.2 of the
supplementary material.

Experiments
Comparison methods

We compared the XGSEA with three baseline methods, HM1,
HMA and HMO, which all directly map each target gene to source
genes based on sequence homology, and estimate the enrich-
ment p-value of target gene set T from enrichment p-value
of particular source gene set S. These three baseline methods
correspond to different strategies to generate S:

HM1: S has a randomly chosen gene homologous to each gene
in T (i.e. |S| = |T|).

HMA: S has all genes homologous to each gene in T (i.e. |S| ≥
|T|).

HMO: S has, out of gene sets predefined by biological path-
ways and GO terms, the set with genes most overlapped with
those in T.

Note that it is reasonable to compare our methods with
the three baseline methods due to two reasons. First, there are
no other advanced methods proposed for XGSEP. Second, the
three baseline methods show fairly good performance in our
experiments later. Since we propose three methods, thus we
compared totally six methods : XGSEA-D, XGSEA-E, XGSEA-E±,
HM1, HMA and HMO.

Data sets

To evaluate the performance of the XGSEA, we need target
expression data, so that we can compute ground truth enrich-
ment p-values. We collected four gene expression data sets
as below, where each data set consists of human (target) and
another species (source: mouse or zebrafish) which share the
same phenotype. Table 1 shows the statistics of the four data
sets.

1. Embryonic development (human and mouse): the two data
sets were collected from www.ncbi.nlm.nih.gov/geo with
accessing number GSE44183. Both gene expression data
sets were obtained from single cell RNA sequencing. In
the human data set, there are 29 samples with 14 766
genes and seven embryonic development stages, including
oocytes, pronucleus, zygote, 2-cell, 4-cell, 8-cell and morula.
For the mouse, there are 17 samples with gene expres-
sion levels of 13 879 genes at six embryonic development
stages, including oocytes, pronucleus,2-cell, 4-cell, 8-cell
and morula. These data sets were used in a cross-species
study [17] already, while this study is not on GSEA.

2. Brain cancer (human and mouse): the data sets of the two
species were downloaded from GEO with accession number
GSE45874 and GSE38591, respectively. Both data sets were
measured by microarray. The human data set has 44 030
genes with six disease and six control samples, while the
mouse data set has 9653 genes with four disease and four
control samples. These data sets were also used in another
cross-species study [18], while this study is also not on GSEA
at all.

3. Ovarian cancer (human and mouse): the two microarray
gene expression data sets were downloaded from GEO with
accession number GSE6008 and GSE5987, respectively. The
human data set has 21 188 genes with 13 mucinous ovarian
tumors and four control samples, while the mouse data
set has 45 101 genes with seven disease and four control
samples. These data sets were also used in the cross-species
study [18].

4. Melanomas (human and zebrafish): the microarray gene
expression data sets of the two species were downloaded
from GEO with accession number GSE83343 and GSE83399,
respectively. The human data set has 42 346 genes with
eight disease and four control samples, while the zebrafish
data set has 13 620 genes with five disease and three control
samples. These data sets were collected from two different
studies [19, 20].

We then accessed Ensembl BioMart through http://www.
ensembl.org/ [21] to retrieve homology relationships between
19 404 human and 19 614 mouse genes, and also 16 070 human
and 18 324 zebrafish genes. The homology data from Ensembl
is produced at the protein level rather than the DNA level by
whole-genome alignments of vertebrate species [22, 23].

We showed two homology matrices between human and
mouse (left) and between human and zebrafish (right), respec-
tively, in Figure S1 (see the supplementary material). We can see
that genes cannot be assigned in a simple manner of one-to-one
correspondence.

We collected 674 human gene sets (pathways) from Reactome
in Molecular Signatures Database (MSigDB), 2250 mouse gene
sets from http://baderlab.org/GeneSets and 1550 zebrafish gene
sets from http://bioinformatics.org/go2msig/. Note that for the
melanomas data set, the genes in some gene sets do not have
gene expression data, and thus GSEA could not be performed to
obtain the ground truth p-values. After removing these gene sets,
only 664 human gene sets are left in the melanomas data set.

Experimental setting

In our experiments, we took human species as the target species,
and took mouse or zebrafish as the source species. We apply
our XGSEA approach to predict the enrichment p-values for the
674 human pathway gene sets T = {T1, · · · , Tn}(n = 674), for
embryonic development, brain, ovarian and melanomas, respec-
tively. For the target gene sets T = {T1, · · · , Tn}, we take the
training source gene sets S = {S1, · · · , Sn} in the XGSEA, where
Si corresponds to Ti, meaning that each gene in Si is homologous
to one or more genes in Ti.

To sufficiently evaluate our XGESA methods, we predict
enrichment p-values for target gene sets with three experimen-
tal settings. Note that the homology between two genes can
be classified into four types: one-to-one, many-to-one, one-to-
many and many-to-many, where one-to-one means only one
gene in one side is homologous to only one gene in the other
side. First level is for simple target gene sets T (1) = {T(1)

1 , · · · , T(1)
n },
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6 Cai et al.

Table 1. Statistics of expression data and human gene sets (T (3), where the cutoff p-values were 0.01 and 0.05 for embryonic development and
the others, respectively)

Gene expression Test sets in human
Data set Species Number of

genes
Number of
samples

Number of
labels

Number of sets Number of
positive sets

Embryonic Human 14 766 29 7 674 24
Mouse 13 879 17 6

Brain Human 44 030 12 2 674 24
Mouse 9 653 8 2

Ovarian Human 21 188 17 2 674 13
Mouse 45 101 11 2

Melanomas Human 42 346 12 2 664 15
Zebrafish 13 620 8 2

where each T(1)
i ⊂ Ti only includes the target genes in Ti with

label ’one-to-one’. For this case, each target gene g in set T(1)
i

only has one homologous source gene, which does not have any
other homologous target gene except g. The second case is for
more complex target gene sets T (2) == {T(2)

1 , · · · , T(2)
n } , where each

T(2)
i ⊂ Ti only includes the target genes in Ti with label ’one-to-

one’ and ’one-to-many’. For this case, each target gene g in set
T(2)

i only has one homologous source gene, which may or may
not have other homologous target genes besides g. The third
case is the most complicated case with pathway target gene
sets T 3 = T = {T1, · · · , Tn}, where the target genes may have any
of four labels.

In summary, we consider three levels for T , i.e. T (1), T (2) and
T (3), where T(1)

i ⊂ T(2)
i ⊂ T(3)

i ( i = 1, . . . , n):
T (1) (simple): each set in T (1) has one-to-one genes only. That
is, target gene g ∈ T(1)

i has only one homologous source gene s,
which has no other homologous target genes except g.
T (2) (medium): each set in T (2) has one-to-one or many-to-one
genes. That is, target gene g ∈ T(2)

i has always only one homol-
ogous source gene s, which has one or more homologous target
genes including g.
T (3) (complex): each set in T (3) target gene g may have one or
more homologous source genes, and one of them s also may have
one or more homologous target genes, including g.

To evaluate the methods sufficiently, we conducted boot-
strapping on 674 human gene sets in T (3) (or T (1) and T (2))
as follows. We first sampled 674 gene sets with replacement
from T (3) for 20 times. For each sampling, the baseline
methods and our methods were then used to predict p-values
for the sampled gene sets that were used to calculate the
evaluating measurements. Finally, we reported average results
over the 20 trials. The parameters d and λ were chosen
from {5, 10, 20, 30, 40, 50} and {0.01, 0.1, 1, 10, 100}, respectively,
to give the best performance under each experimental
setting.

Evaluating the XGSEA methods by regression and
classification measurements

The goal of the XGSEA methods is to predict p-values for
target gene sets, and thus to further discover significant cross-
species gene sets. We first used five regression measurements
to evaluate the performance of our methods for p-value
prediction, and then used one classification measurement (AUC
area under ROC curve) to evaluate the performance of the
XGSEA methods for discovering significant cross-species gene
sets.

Evaluating regression performance

In this section, we first predicted p-values for the target gene sets
in T (3) of the four data sets, respectively, by the XGSEA methods
and the baseline methods, and then compared the regression
performance by using five regression measurements, including
mean square errors (MSEs), mean absolute errors (MAEs), concor-
dance index (CI), Pearson correlation and Cosine similarity. The
definition of the five regression measurements can be found in
Section 1.3 of the supplementary material. We first transformed
p-values to negative log p-values (− log p) and then computed the
measurements.

We reported the bootstrapped MSEs for four real data sets
under T (3) by the six methods in Table 2. We also reported the
results for the MAEs and the Cosine similarities in Table S1 and
Table S2 in the supplementary material. Based on the results
for MSEs and MAEs, the three XGSEA methods performed better
than the three baseline methods for most cases, and the XGSEA-
D method tends to perform the best for all the four data sets.
As for the Cosine similarity, although the baseline methods are
even better than the XGSEA-D and XGSEA-E for most cases, the
XGSEA-E± performed the best among all the methods.

For the measurements of concordance index and Pearson cor-
relation, our experiments showed that none of the six methods
could obtain reasonable values if we consider all the tested gene
sets. Thus, we took an alternative strategy to evaluate the per-
formance by the measurements based on part of the gene sets.
Based on the ground truth p-values for the target gene sets, we
selected the k most significant and the k most insignificant gene
sets. We then calculated the concordance indices and Pearson
correlations between the negative logarithm of the ground truth
p-values and the predicted p-values for the selected 2k gene sets.
We reported the bootstrapped CIs and Pearson correlations by
changing k from the set of {20 : 20 : 300} for all competing
methods on the four data sets with T (3) in Figure 2 and Figure
S2, respectively. The results show that the CIs or the Pearson
correlations basically decrease along with increasing k for most
of the methods and data sets, and the XGSEA methods could
obtain higher CIs and Pearson correlations than the baseline
methods for most cases.

Evaluating classification performance

The XGSEA methods predict p-values for cross-species gene sets.
One important application of these p-values is to discover the
significant gene sets, by setting up a significant level. Thus, we
further evaluated the classification performance of the XGSEA
methods by comparing AUCs (area under ROC curves) with the
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CROSS-species Gene Set Enrichment Analysis 7

Table 2. Bootstrapped mean square errors of six competing methods on four data sets under gene set T (3)

Data set HM1 HMA HMO XGSEA-D XGSEA-E XGSEA-E±

Embryonic 0.33 0.32 0.41 0.30 0.34 0.32
Brain 0.18 0.18 0.16 0.15 0.18 0.15
Ovarian 0.20 0.19 0.16 0.12 0.13 0.12
Melanomas 0.23 0.22 0.14 0.13 0.13 0.13

Note: The best in each row are in bold.

Figure 2. Bootstrapped CIs of six methods on four data sets (T (3))for the selected 2k human gene sets (target), including the k most significant and the k most

insignificant gene sets based on the ground truth p-values of human gene sets.

baseline methods. We first labeled the target gene sets to pos-
itive and negative ones by setting a cutoff p-value (significance
level) for the ground truth p-values so that a gene set is a positive
instance if the true p-value of this instance is lower than the
cutoff; otherwise a negative. This means that we can obtain
positive and negative gene sets by changing the cutoff p-value.
We then could compute the AUC values by comparing the pre-
dicted p-values and the ground truth labels for the target gene
sets. Note that the AUC values rely on the chosen cutoff p-values.

We first examined the performance of the competing meth-
ods by fixing the cutoff value for labeling. Table 3 shows boot-
strapped AUCs under three different gene sets (T (1), T (3) and T (3))
by all six methods, fixing the cutoff at 0.01 for embryonic devel-
opment and 0.05 for the other data sets. This table shows that
the XGSEA significantly outperformed the baseline methods for
most cases. For example, the XGSEA-E± achieved the best in 9

out of all 12 cases, followed by the XGSEA-E of three cases. Any
naive method could neither be the best nor the second best in all
cases, the difference from the best being statistically significant
in t-test over 20 trials. Also the AUC of T (1) was not necessarily
higher than T (2) (also T (3)), since each one-to-one homologous
gene pair between two species is not necessarily the same gene,
which would be prediction-wise harder than the case that the
target and source gene sets share the same gene.

We then checked how the AUCs change along with cutoff
p-values in the set {5e-1, 1e-1, 5e-2, 2.5e-2, 1e-2, 5e-3, 2.5e-3, 1e-3}.
Figure 3 shows the bootstrapped AUCs of all methods on all
four real data sets, under T (3), by changing cutoff p-values. The
bootstrapped AUCs basically increase as the cutoff p-values
decrease, due to the decreasing number of the true positives. For
most cutoff p-values, the XGSEA methods could obtain higher
bootstrapped AUCs than the three baseline methods.
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8 Cai et al.

Table 3. Bootstrapped AUCs of six competing methods on four data sets and three target gene sets

Data set HM1 HMA HMO XGSEA-D XGSEA-E XGSEA-E±

Embryonic T (1) 0.81 (6.59e-06) 0.81 (6.59e-06) 0.75 (1.48e-08) 0.86 0.80 0.89
T (2) 0.80 (2.12e-06) 0.80 (2.12e-06) 0.74 (6.84e-09) 0.86 0.83 0.89
T (3) 0.79 (1.58e-09) 0.80 (4.43e-09) 0.75 (3.73e-11) 0.87 0.83 0.90

Brain T (1) 0.66 (3.14e-01) 0.66 (3.14e-01) 0.58 (1.14e-05) 0.60 0.68 0.67
T (2) 0.59 (1.00e-04) 0.59 (1.00e-04) 0.57 (5.59e-06) 0.60 0.66 0.67
T (3) 0.58 (1.75e-07) 0.60 (1.36e-05) 0.55 (2.64e-07) 0.61 0.63 0.68

Ovarian T (1) 0.45 (2.53e-12) 0.45 (2.53e-12) 0.57 (1.65e-04) 0.67 0.64 0.70
T (2) 0.56 (6.72e-09) 0.56 (6.72e-09) 0.50 (2.07e-08) 0.67 0.69 0.75
T (3) 0.57 (5.60e-12) 0.61 (1.50e-07) 0.46 (6.60e-14) 0.65 0.70 0.77

Melanomas T (1) 0.72 (3.65e-12) 0.72 (3.65e-12) 0.47 (2.10e-16) 0.84 0.92 0.87
T (2) 0.63 (6.14e-05) 0.63 (6.14e-05) 0.48 (8.01e-14) 0.74 0.80 0.81
T (3) 0.44 (1.74e-16) 0.44 (2.90e-15) 0.59 (4.68e-06) 0.64 0.72 0.71

Notes: The best and second best in each row are in bold and underlined, respectively. The p-value by t-test between the best and each corresponding baseline method
is shown in brackets.

Figure 3. Bootstrapped AUCs on four data sets (T (3)) with changed cutoff p-values (and the corresponding numbers of true positives in the brackets).

Discussion

Prediction results without bootstrapping

In the above section, we evaluated our XGSEA methods by boot-
strapping gene sets in T (1),T (2) or T (3), and here we compared our
methods with the baseline methods on the original 674 gene sets
in T (3) without bootstrapping.

We changed cutoff p-values from the same set in Section
’Evaluating classification performance’. Figure S3 (see the
supplementary material) shows the AUCs of all six methods
on all four data sets under the original T (3) with varied
cutoff p-values. We can see that Figure S3 is similar with
the bootstrapped Figure 3, while the curves in Figure 3 seem
more stabilized and differentiable due to the bootstrapped
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Table 4. Eleven human pathways (with p-values) identified by the
XGSEA-E for T-cell dysfunction and reprogramming

Pathway p-value

Gene expression (Transcription) 0.03
A third proteolytic cleavage releases NICD 0.03
Signaling by NOTCH 0.03
Immune system 0.04
Signaling by NOTCH3 0.04
Signaling by NOTCH4 0.04
NOTCH2 activation and transmission of signal to
the nucleus

0.04

Activated NOTCH1 transmits signal to the nucleus 0.04
Signaling by NOTCH2 0.04
Constitutive signaling by NOTCH1 HD+PEST
domain mutants

0.04

Signaling by NOTCH1 0.04

procedure. Both figures show the performance advantage of
the XGSEA methods over the three baseline methods for most
cases.

Robustness against parameters

We first reported the most often best parameters in the boot-
strapped results (Tables 2, 3, S1 and S2) in Table S3 (see the sup-
plementary material), for the four data sets and four measure-
ments including MSE, MAE, cosine similarity and AUC, respec-
tively. We can see that different data sets tend to share similar
best parameters, while different measurements may prefer dif-
ferent parameters. Under the measurements MSE and AUC, four
data sets share the similar parameters d = 5 and λ = 0.01. MAE
prefers the same λ and a larger d = 50, while cosine similarity
prefers a larger λ = 100 and a larger d = 50.

We further examined the robustness of the XGSEA, regarding
the parameter λ variation. Figure S4 (see the supplementary
material) plotted the AUCs obtained by the XGSEA-E method
versus λ in the set {1e-4, 1e-3, 1e-2, 1e-1}, under three original
gene sets (T (1), T (2) and T (3)) of embryonic development and
melanomas. The AUCs for the best baseline methods were also
plotted. This figure shows that AUC of the XGSEA-E was rather
stable within the given range, implying that the advantage over
the baseline methods will be kept constantly.

Effect of similarity and homology on predictive performance

We examined the contribution of three types of gene set simi-
larity, i.e. Wss, Wst and Wtt, used in the XGSEA, by modifying the
objective function in the formulation of the XGSEA. The objective
function of the XGSEA is given by Equation (5), which has four
terms, where the first term is the divergence and the last three
terms are for Wss, Wst and Wtt. We then generated four different
variants of Equation (5), as follows:
MMD: only divergence, i.e. no terms on gene set similarity.
MMD+W: divergence and two terms on Wss and Wtt.
MMD+B: divergence and the term on Wst.
MMD+WB: original objective function, i.e. Equation (5).

We applied these four variants to embryonic development
data with target gene set T (3). Table S4 (see the supplementary
material) shows AUCs obtained with the cutoff (for p-values) of
0.01. From Table S4 (see the supplementary material), MMD+WB

(i.e. original Equation (5)) achieved the best result for the XGSEA-
E and the XGSEA-E±, and MMD was worst for them. This result
implies that all gene set similarity contribute to the performance
improvement.

We then evaluated the effect of sequence homology on pre-
dictive performance, by removing a certain amount of part in
sequence homology matrix M: being motivated by that less
homology connectivity between two species would cause poorer
performance.

In more detail, we first randomly chose a certain number
of genes from the source and target gene sets, respectively,
and kept only the part corresponding to these genes in M.
Practically, we used 50 500 and 5000 for this number of
selected genes, resulting in three matrices: M50, M500 and M5000,
respectively. Using each of the four sequence homology matrices
(including original M), we ran the XGSEA over embryonic
development data under gene set T (3) to predict enrichment
p-values.

Table S4 (see the supplementary material) shows the per-
formance results (AUC) of this experiment. The results show
that the AUC was reduced by decreasing the number of ran-
domly selected genes, while if the selected number is 5000,
the performance was almost consistent with that of using the
original M, implying that interestingly 5000 genes might be good
enough.

Case study: identifying human pathways for T-cell
dysfunction and reprogramming from mouse ATAC-Seq

It is important for cancer immunotherapy to study the epige-
netic regulation of T-cell dysfunction and therapeutic repro-
grammability: a plastic dysfunctional state from which T-cells
can be rescued, and a fixed dysfunctional state in which cells
are resistant to reprogramming [24]. Identifying two (plastic or
fixed) dysfunctional chromatin states, through which T-cells in
tumours differentiate, would be very important to predict, for
example, if a patient will respond to a therapy. Using GSE89308
of GEO on ATAC-Seq data of mouse, with 22 samples and the two
chromatin states [24], we ran the XGSEA-E (B = 100 000, λ=0.01
and d=5) to identify human pathways out of 1960 Reactome
pathways (downloaded from https://reactome.org/download-da
ta).

Table 4 shows 11 human pathways identified by the XGSEA-E
at the cutoff of 0.05, where the top, ‘gene expression (transcrip-
tion)’, and the fourth ‘immune system’ are large pathways with
1367 and 2296 genes, respectively. Obviously due to important
chromatin roles in transcription, ‘gene expression (transcrip-
tion)’ is tightly related to the chromatin states. Also ‘immune
system’ definitely plays important roles in T-cell dysfunction
and reprogramming through a number of membrane proteins,
such as CD38, CD101, CD30L, CD5, TCF1, IRF4, BCL2, CD44, PD1,
LAG3 and CD62L [24].

The remaining nine pathways are all on Notch signaling
pathways, which affect T cells in various ways. Notch signaling
pathways play multiple essential roles in thymic T cell devel-
opment and peripheral T cell differentiation [25]. For exam-
ple, Delta-like ligand 4 (DLL4) interacts with Notch 1 to specify
thymic T cell commitment during lymphocyte development.
This Notch pathway regulates CD8+ T cells by directly upregu-
lating mRNA expression of granzyme B and perforin to maintain
memory T cells [26].

Furthermore, the Notch pathway plays an important role
in antitumor immunity. CD8+ T cell-specific Notch2 deletion
impairs antitumor immunity, whereas the stimulation of the
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Notch pathway can increase tumor suppression. Ezh2, a sup-
pressor of the Notch pathway, regulates effector T-cell polyfunc-
tionality and survival by targeting the Notch signaling path-
way [27]. Down regulation of Ezh2 could elicit poor antitumor
immunity.

Besides, Delta-like 1-mediated Notch signaling enhances the
conversion of human memory CD4 T cells into FOXP3-expressing
regulatory T cells [28]. These facts support the reliability of the
pathways identified by the XGSEA.

On the other hand, we ran a naive approach, HMA, over the
same data, under the cutoff of 0.05, resulting in 20 pathways
showed in Table S5 (see the supplementary material). Although
the number of pathways is larger than Table 4, these 20 pathways
were diverse and less connected to the chromatin states, such as
only two being related to Notch signaling pathways.

Conclusion
We have defined XGSEP for promoting GSEA on species with
scarce expression data, and proposed the XGSEA with three
steps, which can be simply: (1) GSEA, (2) domain adaptation and
(3) regression. Our empirical supervised validation, including
regression and classification, over four real data sets revealed
that the XGSEA outperformed three baseline approaches under
the measurements MSE, MAE, CI, Pearson correlation, cosine
similarity and AUC for most cases. Particularly, the advantage
was also proved statistically by bootstrapping and t-test. In
the case study, mouse ATAC-Seq expression data are used to
identify significant human pathways for T-cell dysfunction and
reprogramming. The XGSEA found rather general two pathways
related with gene expression (transcription) and immune sys-
tem, as well as nine Notch signal-related pathways, all being con-
vincing, especially compared with pathways found by a baseline
approach. Our XGSEA methods also have potential applications
on minor species once the homology information between the
minor species and one major species is available in the future.

There are two characteristics for the proposed XGSEA meth-
ods. On one hand, the XGSEA methods apply domain adaptation
to reduce the gap of samples from different species. It’s com-
mon that different species samples are drawn from distinguish
distributions. To shorten the distance of two sample distribu-
tions between different species for better downstream analysis,
the XGSEA methods take domain adaptation as an effective
strategy to search a latent subspace, in which two distributions
are as close as possible. When the subspace found and new
representations of samples computed for different species, tra-
ditional machine learning methods, such as linear regression,
can be used to train in one species and test in the other one.
Besides, compared with three naive methods, which project
linearly the target gene set to the corresponding source one
based on homology network directly, better new representations
of source and target gene sets are computed by the XGSEA meth-
ods with capturing the complex relationship among gene sets
from different species. On the other hand, in the source species,
the XGSEA methods learn a regression model with enrichment
scores, instead of training a model with p-values directly. The
power of this strategy is shown by the performance of the XGSEA
methods on the results in Table 3, which further indicating that
training on enrichment scores can capture more information
than training on p-values for cross-species gene sets enrichment
analysis.

Improvement of the XGSEA would be definitely interesting
future work. It would be worth working on exploring a bet-
ter variation on each of the three steps of the XGSEA: Step 1

can be generalized or focused on another statistical problem.
Exploring more efficient, robust domain adaptation would be
interesting future work for Step 2. Reasonably in Step 3, we
can consider more sophisticated regression models. The most
key point of the XGSEA is Step 2, i.e. domain adaptation, which
would be useful for other problems between two species, such
as genome wide association studies between a well- and the
other less-sequenced species. This direction of applying domain
adaptation to various problems would be also promising future
work. On the statistical side, we could also further consider the
problem of multiple testing and controlling the false discovery
rate or family wise error rate, which have been well studied in
regular GSEA.

Data Availability
All data used in our experiments is available and the details of
data source can be found in Data sets Section.
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Supplementary data are available online at Briefings in Bioinfor-
matics.
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