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Abstract

Motivation: Adverse drug reaction (ADR) or drug side effect studies play a crucial role in drug discovery. Recently, with the

rapid increase of both clinical and non-clinical data, machine learning methods have emerged as prominent tools to

support analyzing and predicting ADRs. Nonetheless, there are still remaining challenges in ADR studies. Results:In this

paper, we summarized ADR data sources and review ADR studies in three tasks: drug-ADR benchmark data creation,

drug–ADR prediction and ADR mechanism analysis. We focused on machine learning methods used in each task and then

compare performances of the methods on the drug–ADR prediction task. Finally, we discussed open problems for further

ADR studies. Availability: Data and code are available at https://github.com/anhnda/ADRPModels. Supplementary:

Supplementary materials are available at Briefings in Bioinformatics online.
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Introduction

According to WHO, an adverse drug reaction (ADR) or drug side

effect is a response to a medicine that is noxious and unin-

tended, and which occurs at doses normally used in human

[1]. In reports of 2011, ADRs accounted for nearly 6% of total

hospitalizations in the USA, which cost billions of dollars and

were responsible for significant patient morbidity and mortality

[2, 3]. Therefore, the studies of ADRs are important in drug

discovery.

The traditional methods for obtaining ADRs of drugs

often use clinical trials or post-marketing surveillance reports

[4]. However, these methods are costly and time-consuming.

To deal with these disadvantages, machine learning methods

integrating various kinds of ADR data sources are used to

make inexpensive and fast predictions. These results provide

potential ADRs and theirmechanism analysis for further clinical

verification to enhance ADR studies.

Data sources used in ADR studies consist of clinical and non-

clinical data. The clinical data contains observations of ADRs

from clinical treatments of patients. These observations have

not only ADRs but also personal contexts, such as dosages of

treatments, ages, genders and diseases of patients. Since differ-

ent patients can have different ADRs, such personal contexts can

support to build personalized ADR prediction models.

The non-clinical data contain information of biological sys-

tems such as drug–protein interactions and biological processes.

In fact, there are various possible mechanisms in ADRs, for
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Table 1. Recent surveys on ADR studies

Paper

Task Data

Method

analysisClinical data extraction Drug-ADR prediction Clinical data Drug-ADR and

non-clinical data

Poloju and

Muniganti, 2018 [7]

X X

Chen et al., 2016 [8] X X X

Ho et al., 2016 [9] X X X X

example, by interactions of drugswith proteins, but the details of

thesemechanisms are still unknown [5, 6]. By integrating clinical

data with non-clinical data, it is expected that the quality of ADR

studies will be improved, and ADRmechanisms can be revealed.

Since there are different machine learning methods using

various kinds of ADR data sources, an overview of current meth-

ods in ADRs is necessary. Table 1 summarizes the most recent

survey papers related to ADR studies. These studies often use

either clinical data [7] or non-clinical data [8]. There is only

one survey that uses both kinds of data [9], but there is no

detailed analysis on methods, such as providing a taxonomy or

conducting experiments to compare performances of methods.

Recently, there are new studies in ADRs with the emerging

of using machine learning methods, leading to a need for a

more detailed classification for these methods. Moreover, ADR

studies are not only drug-ADR prediction [8] but also analyzing

ADRmechanisms by revealing biological components associated

with ADRs [10]. Motivated by this, we give a broader view of ADR

studies containing ADR data sources and how computational

tasks of ADRs use these kinds of data.

The contributions of our paper can be summarized as follows.

(i) We summarize the ADR data sources containing both clinical

and non-clinical data. (ii) We summarize a wide range of drug

descriptors used in ADR studies. (iii) We analyze methods used

in ADR studies in three main tasks: (a) drug-ADR benchmark

data creation, (b) drug-ADR prediction and (c) ADR mechanism

analysis (We focus on papers on the main journals with the

most numbers of papers on this topic such as Bioinformatics,

BMC Informatics, Briefing in Bioinformatics and Nucleic Acid

Research, then we follow cited papers. Papers are collected up

to February 2019.). In each task, we analyze data and commonly

used machine learning methods. (iv) We conduct an experiment

to compare the drug-ADR prediction performances of eight com-

monly used methods.

The organization of the paper is as follows: Section 2 presents

the data sources used in ADR studies. Section 3 details different

kinds of drug descriptors that encode drug information. ADR

studies with tasks andmethods are detailed in Section 4. Finally,

discussions on current ADR studies and open problems are

presented in Section 5.

Data sources in ADR studies

In this section, we summarize commonly used data sources in

ADR studies. Figure 1 illustrates a hierarchical classification of

data sources in ADR studies containing two groups: clinical and

non-clinical data.

Clinical data

Clinical data contain observations of ADRs in clinical treat-

ments, which are often electronic health records or records

Table 2. Commonly used clinical data sources

Data sources Personel

context

Drug-ADR benchmark

Monopharmacy Polypharmacy

FAERS [13] X

OMOP-CDM [15] X

SIDER [16] X

Liu’ dataset [17] X

AEOLUS [18] X

OFFSIDES [19] X

TWOSIDES [19] X

from adverse report systems. Each record contains drugs and

observed ADRs. In addition, personal contexts such as demo-

graphic and dosage information are also stored. There is evi-

dence that ADRs are different from different patients [11]; there-

fore, these personal contexts are important to build personalized

ADR prediction models [12].

Table 2 provides the commonly used clinical data sources. For

personal contexts, it has FDA Adverse Event Reporting System

(FAERS) [13] and Medical Outcomes Partnership Common Data

Model (OMOP CDM) [14]. There are four main tables in FAERS:

demographics, drug, therapy and reaction. The demographics

table describes patient information containing patient identifi-

cation, age, gender, weight, location and other related informa-

tion. The amount and routes of drug administrationwith patient

identifications come from the drug table, and the time of drug

treatments is from the drug therapy table. The reaction table

contains the drug adverse reactions with patient identifications.

OMOP CDM is a datamodel provided by Observational Health

Data Sciences and Informatics [15], which is an international

collaboration with the aim to create and apply data analytic

solutions to a large number of observational health databases.

There are four domains of OMOP CDM v5.0: standardized clinical

data, standardized health system data, standardized health eco-

nomics data and standardized derived elements. Standardized

clinical data contain the core information with clinical events

and demographic information of patients.With OMOP CDM,mil-

lions of health records from different resources are transformed

into pre-defined tables of the four domains, supporting further

analysis [32].

FAERS was used to extract drug-ADR benchmark datasets,

which contain reliable drug–ADR associations [16, 19]. SIDER,

a common ADR benchmark dataset for many ADR studies,

was extracted from FAERS for ADRs caused by single drugs

(monopharmacy) [16]. Liu’ dataset [17] is a benchmark dataset

extracted fromSIDER into the binary formatwith additional drug

information. AEOLUS is also a monopharmacy dataset extracted

from FAERS, and has more drug–ADR associations than SIDER.

Extracting from FAERS with a criteria of removing bias data,
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Table 3. Commonly used non-clinical databases

Database Elements Having Interactions

Chemical / drug Protein / gene Pathway ADR term Disease

DrugBank [20] X X X

PubChem [21] X

PDB [22] X

BindingDB [23] X X X

HPRD [24] X X

CTD [25] X X X X

KEGG [26] X X X X X

SuperTarget [27] X X X

ADReCS [28] X

DART [29] X X

TTD [30] X X X X X

Bio2RDF [31] X X X X X X

OFFSIDES for ADRs caused by single drugs and TWOSIDES for

ADRs caused by combinations of two drugs (polypharmacy) were

created [19]. However, SIDER, AEOLUS, OFFSIDES and TWOSIDES

only contain two kinds of information: drugs and ADRs. As far as

we know, there is no benchmark ADR data for academic research

that contains personal contexts such as diseases and duration

of drug treatments.

In recent years, data from social media such as Facebook

and Twitter are another kind of data to analyze ADR. This social

media data contain comments of patients during drug treat-

ments. However, the tasks on this kind of data are mainly ADR

identification using techniques of natural language process-

ing [33–35], which are considered as data pre-processing steps,

therefore, we do not cover them in this survey.

Non-clinical data

The non-clinical data contain information of chemical, physical

and biological properties of drugs and biological systems,

which can help reveal mechanisms of drugs and ADRs. In

fact, ADRs are results of complex reactions of drugs with

biological components. Some studies have shown that drug side

effects can be the results of reactions of drug chemicals with

proteins [5, 6, 36], which interrupts normal biological processes

leading to abnormal reactions of human bodies. By using this

kind of data, we can improve the performance of models

and extract possibly associated biological components with

ADRs.

Table 3 summarizes the commonly used non-clinical

databases in ADR studies in two aspects: elements in each

database and interactions among elements existed or not.

For example, ADReCS [28] is a database for only ADR term

definitions, and KEGG [26] contains information of proteins,

drugs, biological pathways, diseases and interactions among

them such as drugs with proteins targets. To link these

databases, Bio2RDF [31] provides interconnections among

elements of different databases.

Finally, the connection between clinical and non-clinical data

can be illustrated by a network in Figure 2. The clinical data

provide information of drug-ADR connections with personal

contexts. The non-clinical data contain connections of drug–

drug, drug–protein, protein–protein and protein–biological path-

way. This network is used to support some computational tasks

represented in Section 4.

Fig. 1. Data source hierarchy in ADR studies.

Fig. 2. A network for clinical and non-clinical data.
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Table 4. Two groups of structural descriptors implemented in CDK
[40]

Group Name Number of

descriptors

Variable-size Daylight family [41] -

E-State fragments [42] 79

Klekota-Roth [43] 4860

Fixed-size MACCS keys [44] 166

PubChem descriptors [21] 881

CDK substructures [40] 307

Drug descriptors

One possible way of encoding drugs is to use descriptors, which

are physical, chemical and biological characteristics of a drug.

Since the quality of these descriptors impacts ADR prediction

performances, the understanding of drug descriptors is a basic

need. Figure 3 presents a classification for drug descriptors. In

general, drug descriptors can be categorized into two classes:

physical or chemical descriptors (PC-descriptors) and biological

descriptors (BIO-descriptors).

PC-descriptors

The PC-descriptors describe the structure of drugmolecules and

their physical and chemical properties [37–39]. Based on their

dimensionalities and properties, this class of descriptors can

be divided into three subgroups: structural descriptors, spatial

descriptors and other miscellaneous descriptors.

The structural descriptors describe features of molecular

structures such as atom counters, atom pairs, rings and other

substructures. Table 4 presents two groups of structural descrip-

tors (fingerprints) implemented in Chemistry Development Kit

(CDK) [40]: variable-size and fixed-size groups. The former group

generates substructures from a given set of molecules, in which

the number of substructures can be changed depending on the

providedmolecule set [41]. In contrast, the latter group uses pre-

defined substructures, for example, MACCS keys and PubChem

descriptors. An illustration of PubChem descriptors is shown in

Figure 4. The PubChem descriptors contain pre-defined 881 bits,

which are divided into seven sections with corresponding bits.

For instance, bit 308, which belongs to section 3 of simple atom

pairs, indicates the existence of O-H connection.

The spatial descriptors describe spatial properties of drug

molecules. In PubChem3Ddatabase [45], 3D conformers descrip-

tors of molecules are used. These descriptors are calculated

by OMEGA [46], a tool published by OpenEye. Molecular inter-

action fields (MIFs) are another kind of spatial descriptors for

drugs. MIFs describe spatial variation of the interaction energy

between amolecular target and a chosen probe. Probes are small

molecules representing common interactions such as hydropho-

bic, hydrogen bond donors and acceptors [47]. Some well-known

MIFs are GRID [48], VolSurf [49], CoMFA [50] and MetaSite [51].

Figure 5 illustrates the idea of GRID descriptors.Amolecule is put

into a cube with grids. An empirical energy function will be used

to calculate the interaction field of each cell at position (x, y, z)

of the cube. The energy function is defined by

Exyz =
∑

Elj +
∑

Eel +
∑

Ehb

Fig. 3. Different kinds of drug descriptors.

Fig. 4. Seven sections in PubChem descriptors.

Fig. 5. A molecule with 3D GRID.
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Table 5. Main notations

Notation Description

i ∈ {1, . . . ,d} A drug index in a set of given d drugs

j ∈ {1, . . . , s} An ADR index in a set of given s ADRs

xi ∈ R
e A descriptor vector of size e of drug i

X = [x1 . . .xd]
T ∈ R

d×e A descriptor matrix of given d drugs, T

is the transpose operator.

yi,j ∈ R An association score of drug i and

ADR j

yi = [yi,1 . . . yi,s]
T ∈ R

s A vector for association scores of drug

i with s ADRs

Y = [y1 . . .yd]
T ∈ R

d×s A given drug–ADR association score

matrix

hi ∈ R
m A vector of size m representing

associated biological components of

drug i

H = [h1, . . . ,hd]
T ∈ R

d×m A given drug-biological component

matrix

where Elj, Eel and Eeb are the Lennard–Jones function, the elec-

tronic function and the hydrogen bound function, respectively

[48].

Other miscellaneous descriptors such as physicochemical

properties of drugs also affect the action of drugs. Lipophilicity

[52, 53] impacts solubility, absorption, distribution, membrane

penetration and plasma protein binding of drugs. Hydrogen

bond [54] is another physical property of electrostatic attraction,

which takes two out of five Lipinski’s rules [55]. Size/geometric

features of drugs such as molecular weight and atom counters

can also reflect drug properties.

BIO-descriptors

The BIO-descriptors describe biological properties of drugs,

which can be classified into two subgroups: function-based

descriptors and interaction-profile descriptors. The function-

based descriptors describe purposes of drugs in therapy. ATC

code [56], which is a classification system for drugs based on

therapeutic properties, is a typical example of function-based

descriptors.

The interaction-profile descriptors describe associated bio-

logical components of drugs containing protein targets and asso-

ciated biological pathways of drugs [17, 57]. These interaction-

profile descriptors are taken from the databases having drug

interaction information in Table 3, such as DrugBank [20], Bind-

ingDB [23] and Bio2RDF [31].

ADR studies: tasks, data and methods

In this section, we summarize three main computational tasks

in ADR studies: (i) drug-ADR benchmark data creation, (ii) drug–

ADR prediction and (iii) ADR mechanism analysis. Figure 6 pro-

vides an overview of ADR studies of these three tasks. In each

task, we analyze objectives, data and commonly used methods.

Main notations used in the following subsections are described

in Table 5.

Table 6. Contingency table for Fisher’s exact test

Number of records of drugs

Drug i Other drugs

ADR j
Yes n1 n3
No n2 n4

Task 1: drug-ADR benchmark data creation

ADR clinical data contain millions of records with redundant

information, for example, some records contain similar informa-

tion. Creating a drug-ADR benchmark dataset is a necessary task

in ADR studies. It helps other studies in evaluating performances

of new methods and comparing with existing methods.

In ADR studies, benchmark data are extracted from clinical

records to retrieve reliable drug–ADR associations, which are

pairs of drugs with corresponding ADRs. However, drug-ADR

pairs have different levels of association significance in clinical

records. Some pairs of drug-ADR rarely appear in the clinical

records, leading to their low association significance. In addition,

some records often contain a combination of more than one

drug,making the verification of drug–ADR associations difficult.

To check the significance of drug–ADR associations, associa-

tion rule mining or statistical significance tests can be applied

[58]. We will briefly explain a typical significance test, Fisher’s

exact test [59]. Consider drug i and ADR j in a clinical database,

the association information of drug i and ADR j is stored into

a contingency table as in Table 6. In this table, n1 denotes the

number of records containing ADR j of drug i, while n2 is that of

the other drugs. The number of records that do not contain ADR

j of drug i is n3, and that of the other drugs is n4. The Fisher’s

exact test evaluates the significance of the association of drug i

and ADR j by a P-value:

p =
(n1 + n2)! (n3 + n4)! (n1 + n3)! (n2 + n4)!

n1!n2!n3!n4! (n1 + n2 + n3 + n4)!

This technique was used on FAERS to extract SIDER, a

monopharmacy ADR benchmark dataset used in a large number

of ADR studies [16, 60]. The technique was also used to extract

OFFSIDES formonopharmacy ADR,which are ADRs of drugs that

do not appear in the drug’s package insert, and TWOSIDES for

polypharmacy ADRs of drug–drug interactions [19].

Task 2: drug–ADR prediction

Predicting ADRs of drugs, or drug–ADR association scores, is

a main objective of ADR studies. Depending on the personal

context information is used or not, studies in drug–ADR pre-

diction can be divided into two classes: personalized drug–ADR

prediction and general drug–ADR prediction. In the following

subsections,we analyzemachine learningmethods according to

each class.

Personalized drug–ADR prediction

The personalized drug–ADR prediction uses personal contexts

taken from clinical data with information such as dosages of

treatments, gender and age of each patient. Therefore, the pre-

diction result will be different among patients even with the

same drugs. For this prediction, we focus on methods using
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Fig. 6. Computational tasks of ADR studies: data and commonly used methods.

Poisson models, which are commonly used models for person-

alized drug–ADR prediction.

i. Poisson models

The aim of using Poissonmodels is to predict the probabilities of

the numbers of occurrences of ADRs during drug treatments. It

is assumed that these numbers follow Poisson distributionswith

expectations depending on the taken drugs [12, 32]. For simplic-

ity, considering a patient p in a drug treatment, the probabilities

of numbers of occurrences of s ADRs 8(ỹ|x̃) ∈ R
s are calculated

by

8(ỹ|x̃) = [P(ỹ1|φ1(x̃)) . . . P(ỹj|φj(x̃)) . . . P(ỹs|φs(x̃))]T

where x̃ = [x̃p,1 . . . x̃p,i . . . x̃p,d]T is a vector indicating drugs taken

by patient p during the treatment, ỹ = [ỹ1 . . . ỹj . . . ỹs]T is a vector

denoting the numbers of occurrences of sADRs and P(ỹj|φj(x̃))) =

φj(x̃)ỹje−φj(x̃)/ỹj! is the Poisson distribution for the number of

occurrences of ADR j with expectation φj(x̃). A commonly used

formulation of φj is

φj(x̃) = exp (θp,j +

d
∑

i=1

x̃p,i.wi,j)

where θp,j is a parameter depending on the patient, leading to

differences in ADR occurrences of different patients, and wi,j is

a parameter used as a weight for the association of drug i and

ADR j [32]. This formulation shows a multiplicative contribution

of each drug to the expectation of the number of occurrences of

each ADR.

However, the existing Poisson models have a limitation in

terms of integrating other information such as weights, genders

of patients and also non-clinical data.

ii. Other methods

There are other methods that were used to combine drugs with

personal contexts into medical case vectors. A feature-based

similarity method was proposed to learn weights for these med-

ical case vectors with the idea was to distinguish cases having

an ADR with cases not having the ADR [61]. These medical case

vectors were also used as inputs for a classification problem [62].

General drug–ADR prediction

In contrast to personalized drug–ADR prediction, general drug–

ADR prediction predicts drug–ADR association scores without

using personal contexts. A common approach for this class is

to combine knowledge of drugs from non-clinical data to enrich

drug information and apply machine learning methods to build

drug–ADR prediction models. As presented in Section 3, drug

information is described by various types of drug descriptors.

The drug–ADR predictionmodels receive the drug descriptors as

the inputs and output all corresponding ADRs.

In this study, we consider general drug–ADR prediction as a

multi-label classification problem such that each ADR is a label

and each drug can have many labels [64, 65]. The prediction

models calculate the association scores,which are real numbers,

of each drug with all labels. The final labels of the drug are

selected from these scores by a rankingmethod. In detail, a drug–

ADR prediction model is formulated as a function f : Re → R
s,

where e is the number of descriptors and s is the number of ADRs.

Given a drug with descriptor vector x ∈ Re, the model predicts

drug–ADR association scores with s ADRs: f(x) ∈ R
s.

We further classify themodels into two classes: (i) non-latent

variable models and (ii) latent variable models. Latent variables

are ones that are not directly observed or measured, and needed

to infer from observed data. Figure 7 presents an example of

latent variables from a study on finding patterns of psychoactive

substances used in adolescents [63]. There are thirteen psy-

choactive substances from beer to hallucinogenics, which are
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Fig. 7. An example of latent variables with 13 psychoactive substances [63].

observed variables. In addition, there are some correlated pairs

of substance usages, for example, cocaine and amphetamines.

The study suggested that these substances can be grouped into

three groups: alcohol, cannabis and hard drug. The patterns of

substance usage will be taken from these three groups, which

are called latent variables.

A latent variable model is a model that contains latent vari-

ables obtained from observed ones. In application to drug–ADR

prediction, latent variables of drugs can be interpreted as groups

of drug descriptors that are highly correlated with each other.

The representations of drugs in the space created by latent

variables are called latent vectors.

In the following contents, we first describe the formulation

for function f according to models of the two classes: non-latent

variable models and latent variable models, which are based on

the criteria that latent vectors of drugs are learned or not. Then

we present an experiment to compare prediction performances

of these models.

i. Non-latent variable models

In non-latent variable models, drug descriptors are used to pre-

dict drug–ADR associations without learning drug latent vectors.

We present three typicalmethods: (i) k nearest neighbors (k-NN),

(ii) kernel methods and (iii) mining networks of drug-ADR.

(i) k-NN

The idea of using k-NN is that drugs having similar descriptor

vectors tend to have similar ADRs [17, 64, 66–68]. Suppose that

there is a similarity measure sim : R
e × R

e → R, for example,

cosine similarity. To predict drug–ADR association scores f(x),

first the top k most similar drugs to x are identified resulting in

a set of indices of the similar drugs T(x, k). Then the drug–ADR

association scores are calculated by

f(x) = [f1(x) . . . fj(x) . . . fs(x)]T,

where fj is a weighted average function:

fj(x) =
∑

i∈T(x,k)

wi(x)yi,j, j ∈ {1 . . . s},

withweightswi are obtained from drug similarities, for example:

wi(x) =
sim(x,xi)

∑

i′∈T(x,k) sim(x,xi′ )
. (1)

Some extensions of KNN were also applied, for example the

linear neighborhood similaritymethod (LNSM) [64]. In LNSM, the

similarity weights are calculated such that a drug descriptor vec-

tor is a linear combination of descriptor vectors of the neighbor

drugs with corresponding similarity weights.

(ii) Kernel methods

The idea of using kernel methods, for example, support vec-

tormachines (SVMs), is to use classification functions calculated

from kernel functions in the form of inner products of drug

descriptor vectors [17, 57, 67, 69]. To predict drug–ADR associa-

tion scores f(x) = [f1(x) . . . fj(x) . . . fs(x)]T, the kernel methods use

the following form for fj:

fj(x) = g(
d

∑

i=1

wi,jyi,jK(x,xi)), j ∈ {1 . . . s}

where g is a function, for example, a sign function.K : Re×R
e → R

is a kernel function, for example, a radial basis function (rbf):

K(x,xi) = exp(−
(x−xi)

T(x−xi)

2δ2
) with a hyperparameter δ, and wi,j is a

parameter used as a weight for the association of drug i and ADR

j.

Different from k-NN, the kernel methods learn weights from

a training process,which depends on both drugs andADRs,while

weights in k-NN are calculated only from drug similarities.

c. Mining networks of drug–ADR

Consider a drug–ADR network G = (V,E), where V is a

set of nodes of d drug and s ADRs: V = {v1, . . . ,vi, . . . ,vd} ∪

{ν1, . . . , νj, . . . , νs}, and E is a set of edges of drug nodes–ADR nodes

for known ADRs of drugs and drug nodes–drug nodes for drug

similarities. The idea of mining this network is that if a drug and

an ADR in the network are well-connected, they possibly have a

high association score [70–72]. This approach can be formulated

in two steps:

1. Calculate partial connection scores r(vi, νj) ∈ R
l of each pair

of drug node vi and ADR node νj using l different measures

on G. A commonly used measure is Jaccard index [70, 72].

Let Ni = {v|(v,vi) ∈ E} be a set of neighbor nodes of drug

node vi, and Nj = {v|(v, νj) ∈ E} be that of ADR node νj, the

partial connection score calculated by Jaccard index is |Ni ∩

Nj|/|Ni ∪ Nj|, where | i̇| denotes the cardinality of a set. Some

other measures such as Dice index and Adamic/Adar index

were also applied [72]. Random walk [73] was also applied to

calculate r [74].

2. Calculate drug–ADR association scores f(x) of a drug with

descriptor vector x. Let v(x) be the corresponding node in G
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of the drug. The association scores are obtained by

f(x) = [f(r(v(x), ν1)) . . . f(r(v(x), νj)) . . . f(r(v(x), νs))]
T

where f was often a binary function [71] or a logistic regres-

sion function (LR) [70]. In addition, random forest (RF) was

also applied to f [72].

However, a problemwith mining drug–ADR networks is spar-

sity that there are too few edges between drugs and ADRs, for

example, in SIDER dataset, the edge density is 0.017. This makes

the prediction less effective since there is only a small number

of ADRs predicted for each drug.

ii. Latent variable models

In latent variablemodels, drug–ADR association scores are calcu-

lated by using drug latent vectors learned from drug descriptors.

Figure 8 illustrates two stages of using latent models: learning

latent vectors of drugs and then using these latent vectors for

prediction. It is expected that latent vectors can remove redun-

dant information from drug descriptors, for example, unnec-

essary descriptors. In addition, calculating with latent vectors

of small size can reduce complexity of high-dimensional data.

In this paper, we briefly describe three commonly used latent

variable models (canonical correlation analysis (CCA), matrix

factorization (MF) and neural networks), and some other mis-

cellaneous models.

(i) Canonical correlation analysis

The aim of using CCA is to find weight vectors a ∈ R
e and b ∈

R
s such that the correlation of the projections of drug descriptor

matrix X and drug–ADR association matrix Y is maximized [57]:

argmax
a,b

(Xa)T(Yb)
√

(Xa)T(Xa)
√

(Yb)T(Yb)
.

The first pair of (Xa,Yb) is called the first pair of canonical

variables (latent variables). The remaining pairs of canonical

variables have an additional constraint that they are uncorre-

lated with existing pairs of canonical variables. c pairs of weight

vectors a and b form two weight matrices: A ∈ R
e×c and B ∈ R

s×c,

respectively.

The latent vector of a drug with descriptor vector x is cal-

culated by z(x) = ATx. Drug–ADR association scores f(x) are

obtained by minimizing the distance of latent vectors:

f(x) = argmin
y∈Rs

∥

∥

∥z(x) − BTy
∥

∥

∥ .

where ‖. ‖ is a norm, for example, Euclidean norm.

Sparse canonical correlation analysis (SCCA), a variant of

CCA, was also applied to predict drug–ADR association scores

[67]. In SCCA, L1 regularization is applied to columns of A and

B, leading to their sparsity.

(ii) Matrix factorization

The idea of using MF is illustrated in Figure 9 [75]. It is

assumed that drugs and ADRs share c unknown latent variables.

Then the drug–ADR association matrix Y is decomposed into

two matrices of latent vectors of drugs and ADRs in the space

of latent variables: U ∈ R
d×c and V ∈ R

s×c, such that Y ≈ UVT.

Supposing there is a drug similarity matrix Sd ∈ R
d×d calculated

from drug descriptors matrix X, and an ADR similarity matrix

Ss ∈ R
s×s calculated from ADR definitions, the objective function

is

argmin
U,V

∥

∥

∥Y − UVT
∥

∥

∥ + R(U,V,Sd,Ss),

where the first part is the error from MF, and the second one

is the regularization for U and V given Sd and Ss, for example,

Laplacian regularization.

To calculate drug–ADR association scores f(x), first k-NN is

applied to calculate a new latent vector z(x) from the existing

drug latent vectors:

z(x) =
∑

i∈T(x,k)

wi(x)ui

where ui ∈ R
c is the latent vector of drug i such that uT

i corre-

sponds to the ith row of U, T(x, k) is the set of indices of the top k

most similar drugs to x, andwi(x) are similarity weights defined

in Equation 1.

Then, the drug–ADR association scores are obtained by

f(x) = Vz(x).

Different from CCA, MF only focuses on Y to learn latent

vectors and uses X as additional information, which can be

omitted from the regularization part. Meanwhile, CCA requires

both X and Y to obtain latent vectors.

(iii) Neural networks

Neural networks, which are machine learning models

featured by the ability to learn non-linear relationships, were

applied to predict drug–ADR association [76–78]. Figure 10

illustrates this technique in detail. The basic components of

neural networks are neurons. Each neuron receives an input

vector x′ = [x′
1 x′

2
. . . x′

n]
T and outputs a value y′ by a function:

y′ = f(wTx′ + b), where b is a bias, w = [w1 w2 . . .wn]
T is a

weight vector and f is an activation function, for example, a

sigmoid function, making non-linear combinations. A neural

network module is composed of multiple layers of neurons that

the output of each neuron of a layer is used as an input for

neurons of other layers. The outputs of a neural module, for

example, named Encoder, given an input vector x is denoted by

Encoder(x).

To predict drug–ADR association scores f(x), there are two

steps to process:

1. Obtain the latent vector: z(x) = Encoder(x), where Encoder is a

neural module receiving drug descriptor vector x as the input

vector.

2. Predict drug–ADR association scores: f(x) = Decoder(z(x)),

where Decoder is a neural module receiving drug latent vector

z(x) as the input vector.

An advantage of using neural networks is the ability to

approximate any continuous function. If there is no hidden

layer, neural networks become logistic regression functions. The

architecture of neural networks can be more complex when

changing connections of neurons and number of layers, for

example, amulti-layer feedforward neural network (MLN) [77], or

a deep convolutional neural network (DCN) [78]. These complex

neural networks aim to approximate mapping functions from

inputs to outputs better. However, the number of parameters

in a neural network are often much larger than that of

other models. This problem leads to increasing computa-

tional complexity and the potential for overfitting of neural

networks.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/1/164/5678053 by Kyoto U

niversity user on 01 April 2022



172 A survey on ADR

Fig. 8. Learning latent variables and using latent variables.

Fig. 9. An illustration of matrix factorization.

Fig. 10. An illustration of a neural network.

Table 7. Statistics of the used dataset.

Num drugs Num ADRs Num drug-ADRs ADRs/drug

Avg. Min Max

1,385 2,707 605,121 445 1 2,703

(iv) Other methods

There are some miscellaneous methods to obtain latent vec-

tors of drugs to predict drug–ADR associations, for example,

mapping drugs into an ADR space [79–81] and mapping drugs

into a metabolic reaction space [82]. In mapping drugs into an

ADR space, groups of highly correlated ADRs were extracted,

then each drug was represented by a vector over these groups. In

mapping drugs into a metabolic reaction space, flux variability

analysis was applied to represent drug–protein/gene interaction

profiles by a vector over metabolic reactions [83], then these

vectors were used to predict ADRs.

Performance comparison in general drug–ADR prediction

We conducted experiments to compare the general drug–ADR

prediction performances on monopharmacy cases of eight

machine learning models. There were four non-latent variable

models: LNSM [64, 68], SVMs [17, 69], RF [17, 72] and LR [17,

70], and four latent variable models: CCA [57, 67], MF [75], MLN

[77] and DCN [78] (The convolutional network proposed in [76]

addressed polypharmacy ADRs, so we do not compare.).

i. Experimental setups

We ran experimentswith AEOLUS dataset [18], amonopharmacy

dataset for drug–ADR prediction, which was also used in [65]

(AEOLUS is the largest one among AEOLUS, SIDER and Liu’s

datasets.). We only selected drugs appearing in DrugBank and

ADRs occurring in more than 50 drugs. The final statistical

information of the dataset is provided in Table 7, containing the

number of drugs, the numbers of ADRs, the numbers of drug–

ADR associations and the average, minimum and maximum

numbers of ADRs per each drug.

In the experiments, we used PCBio and Chem2D as two kinds

of drug descriptors with information presented in Table 8. PCBio

descriptors are the combinations of PubChem descriptors taken

from PubChemand chemical, physical and biological descriptors

taken from Bio2RDF. We extracted descriptors with information

from DrugBank in Bio2RDF as in [68], and selected descriptors

occurring in at least three drugs. 2DChem descriptors are drug

chemical descriptors represented in the form of a matrix such

that each row of the matrix corresponds to chemical features

of an atom in a drug. To represent 2DChem descriptors, we

extracted 53 chemical properties of each atom in the drug’s

molecule, hence each drug is represented in the form of amatrix

that the number of rows equals to the number of atoms of

the drug and the number of columns is 53 (see supplement

materials). In our experiments, 2DChem descriptors are only

used for DCN model [78], other models use PCBio descriptors.

Two commonly used metrics were selected to evaluate pre-

diction performance: area under the ROC curve (AUC) and area

under the precision-recall curve (AUPR) [57, 64, 67, 79].

We used 10-fold cross-validation for the experiment. The

hyperparameters of each model were selected by grid searches

to obtain the highest prediction performances. In detail, the

number of neighbors for LNSM was 60, SVMs were run with an

rbf kernel and the soft-margin hyperparameter was 1. RF was
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Table 8. Statistics of the used drug descriptors

Name Source Size

PCBio Pubchem+Bio2RDF 7593

2DChem Pubchem [N_ATOMS_OF_DRUG,53]

Table 9. Performance comparison of drug–ADR prediction models on Aeolus dataset and PCBio descriptors. Results for
AUC and AUPR contain mean and standard error values in the format value × 10−2

Models

Non-latent models Latent models

LNSM SVMs RF LR CCA MF MLN

AUC (×10−2) 86.07 ± 0.56 89.26 ±0.47 86.82 ±0.41 89.00 ±0.40 64.51 ±1.05 87.13 ±0.03 89.55 ±0.39

AUPR (×10−2) 59.04 ±1.58 67.57 ±1.63 61.92 ±1.11 66.75 ±1.08 34.17 ±2.07 61.03 ±1.13 68.70 ±1.23

Time (s) 73 22642 181 3658 317 25 186

Table 10. Summary of the models in terms of performance, non-linearity and dimensional reduction

Models AUC ranking Time ranking Non-linearity Dimensional reduction

Non-latent LNSM 6 2

SVMs 2 8 X

RF 5 3 X

LR 3 6 X

Latent CCA 7 4 X

MF 4 1 X

MLN 1 4 X X

DCN 8 7 X X

run with 80 estimators. CCA had 60 pairs of canonical variables,

MF had 60 latent factors andMLF had two hidden layers with the

sizes of 1000 and 800. DCN had the same architecture described

in [78] with four convolutional and pooling layers. The detail

of selecting hyperparamters is provided in the supplemental

material.

We calculated the average computational time of each fold.

The computational time was evaluated on a computer with Intel

Core i7-6700 CPU and 16 GB RAM.

ii. Experimental results

The results of prediction performances and computational time

are presented in Table 9. In addition, DCNwith 2DChem descrip-

tors achieved 73.80±0.46 in AUC, 39.10±0.63 in AUPR and 4862(s)

of computational time.

The results show that MLN is the model having the highest

prediction performances in both AUC and AUPR (89.55 ×10−2

and 68.70 ×10−2). SVMs are the second highest model with

89.26 × 10−2 and 67.57 × 10−2 for AUC and AUPR. In terms of

computational time, MF is the fastest model, and SVMs are the

slowest one. CCA and DCN are the twomodels having the lowest

prediction performances.

We summarize the properties of the models in terms of

linearity and dimensional reduction, and rank the performances

of the models in AUC and computational time as in Table ??.

This table shows that in balancing between prediction accuracy

and computational time, two latent variable models, MLN and

MF, are the two most promising ones. In addition, latent variable

models learn latent representation vectors of small size for

drugs, which are much smaller than the original size of the

drug descriptor vectors. This dimensional reduction can help

to remove redundant information from drug descriptors. We

also can see that three out of the four highest AUC models are

non-linear, suggesting that there are non-linear relationships

between drug descriptors and ADRs.

Task 3: ADR mechanism analysis

The objective of this task is to reveal associated biological com-

ponents such as proteins or pathways of ADRs. In this task,

non-clinical data of drug–protein interactions, protein-pathways

and chemical-pathways are combined with clinical data, usu-

ally drug-ADR benchmark data. There are two commonly used

approaches for this task: (i) using sparse learning and (ii) using

network mining.

i. Using sparse learning

In the sparse learning approach, the idea is to consider asso-

ciated biological components of each drug as a feature vector,

and then find associated features corresponding to ADRs. To

do this, weight vectors over biological components and ADR

are used with sparse constraints by applying L1 regularization.

Remaining subsets with high weights of biological components

and ADRs are associated with each other. We describe two

studies using this approach with logistic regression and CCA.

Logistic regression with regularization was proposed to

obtain associated biological pathways with each ADR [84]. To

obtain pathways associated with ADR j, let wj ∈ R
m be weights

over m pathways obtaining from

argmin
wj

1

d

d
∑

i=1

(

− yi,j log
1

1 + exp(−hi · wj)

− (1 − yi,j) log(1 −
1

1 + exp(−hi · wj)
)
)

+ λw

∥

∥wj

∥

∥

1
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where λw is a regularization parameter.

L1 regularization
∥

∥wj

∥

∥

1
forces wj to be a sparse vector. The

corresponding pathways with high weights are associated with

ADR j.

SCCA was applied to obtain subsets of correlation of ADRs

and pathways [85]. By applying SCCA into two matrices Y and H

of drug-ADR and drug-biological component, respectively, two

sparse weight matrices A ∈ R
s×c and B ∈ R

m×c are obtained.

The corresponding subsets of ADRs and pathways of each pair

of (al,bl) with l = 1 . . . c are correlated.

ii. Using network mining

The idea of using networks of ADR-biological components is

similar to mining drug–ADR networks for drug–ADR prediction.

If a biological component and an ADR are well-connected in a

network of biological component-ADR, they are highly associ-

ated with each other. The technique was used in [10, 86, 87] to

build a protein–ADR network and discover associated proteins

with each ADR. Dijkstra algorithm, a well-known method to

calculate the shortest paths in a graph,was used on the network

of biological components-ADR to obtain associated biological

pathways of ADRs [88].

Discussion

This survey addressesADR-related studies in three aspects: data,

drug descriptors and tasks with corresponding methods. We

divide data sources into clinical and non-clinical data. Clinical

data contain important personal context information such as

ADRs, diseases, dosages of treatments and demographic infor-

mation. Non-clinical data contain more detailed information of

drugs and biological systems with chemical, physical properties

of drugs, drug–protein interactions and biological pathways.

We summarize the commonly used drug descriptors in ADR

studies. In addition to traditional physical and chemical descrip-

tors, many studies integrate biological descriptors of drugs to

have better drug information.

There are three main tasks in ADR studies: creating drug-

ADR benchmark data, drug–ADR prediction and ADR mecha-

nism analysis. Association rule mining is the commonly used

method for creating drug–ADR benchmark data. The drug–ADR

prediction task is classified into two classes: personalized drug–

ADR prediction and general drug–ADR prediction. In the former

class, Poisson models are widely used. In the latter class, the

commonly used machine learning models can be categorized

into non-latent variable models and latent variable models. The

non-latent variable models predict drug-ADR without learning

latent variables, while the latent variable models learn latent

vectors of small size to represent drugs such that these latent

vectors can help the prediction efficiently. The experimental

results show that MLN is the model having the highest pre-

diction performances, and the latent variable models have the

potential for further development. In ADR mechanism analysis,

using sparse learning and network mining are two commonly

used approaches.

From this survey, we have three remarks on problems in

current ADR studies as follows in current ADR studies as follows:

1) Most of drug–ADR prediction studies address monophar-

macy cases in SIDER benchmark data. There are few studies

proposedmodels for polypharmacy prediction, for example, pre-

dicting with TWOSIDES benchmark data [76], in spite of the fact

that most of significant ADRs come from drug combinations [19,

76].

2) ADR data sources are not effectively used. Recent ADR

studies only use either clinical data without non-clinical data

information or use ADR benchmark data and non-clinical data

without personal context information. There are no studies that

combine full clinical data with non-clinical data. In addition,

current ADR benchmark data such as SIDER, OFFSIDES and

TWOSIDES only contain drugs and ADRs, other personal context

information still remains in original clinical records.

3) Machine learning models are mostly used as black boxes

for drug–ADR prediction, since they only output association

scores of drugs and ADRs. In ADR discovery, explaining ADR

mechanisms is a big challenge. It is not only a problem of pre-

dicting corresponding ADRs of drugs but also how ADRs occur.

However, predicting and revealing ADR mechanisms are now

considered as two separate parts. Designing drug–ADR predic-

tion models that reveal related information of ADRmechanisms

seems to be an important topic.

In conclusion, the use of machine learning models in ADR

studies is likely to develop in the future. Effectively using avail-

able data with suitable models still remains a big challenge. It

is not only drug–ADR prediction is an important task, but also

revealing ADR mechanisms is another task to concentrate on.

Key Points

• Machine learningmethods are prominent tools for ADR

studies.
• There are three main tasks in ADR studies: creating

ADR benchmark data, drug–ADR prediction and ADR

mechanism analysis.
• For drug–ADR prediction, latent variables models have

the potential for further development.
• Remaining issues of ADR studies: (i) There are very few

drug–ADR prediction models addressing polypharmacy

ADR, (ii) ADR data sources are not effectively used

and (iii) drug–ADR prediction models lack the ability to

explain ADR mechanisms.
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