
Kernels for Link Prediction

with Latent Feature Models

Canh Hao Nguyen and Hiroshi Mamitsuka

Bioinformatics Center, ICR, Kyoto University,
Gokasho, Uji, Kyoto, 611-0011, Japan
{canhhao,mami}@kuicr.kyoto-u.ac.jp

Abstract. Predicting new links in a network is a problem of interest
in many application domains. Most of the prediction methods utilize in-
formation on the network’s entities such as nodes to build a model of
links. Network structures are usually not used except for the networks
with similarity or relatedness semantics. In this work, we use network
structures for link prediction with a more general network type with
latent feature models. The problem is the difficulty to train these mod-
els directly for large data. We propose a method to solve this problem
using kernels and cast the link prediction problem into a binary classifi-
cation problem. The key idea is not to infer latent features explicitly, but
to represent these features implicitly in the kernels, making the method
scalable to large networks. In contrast to the other methods for latent fea-
ture models, our method inherits all the advantages of kernel framework:
optimality, efficiency and nonlinearity. We apply our method to real data
of protein-protein interactions to show the merits of our method.

1 Introduction

Link prediction is a major problem in relational data learning [6]. In Social
Networks and Collaborative Filtering, one needs to suggest links for entities
for recommendation. In Bioinformatics and Chemoinformatics, potentially valid
links such as interactions are required to speed up experimental processes. In
order to predict links in relational data, one needs to provide a common model
for both entities and relationships (such as links) in the data. As these two
types of information are of different natures, models are difficult to design and
learn. While modeling entities are of common practice, modeling relationships
is usually of more difficulty. For link prediction, these relations are interpreted
differently and reflect different semantics. While in social networks, links are
usually of similarity or relatedness nature, it is not the case elsewhere. It is the
target of this work to deal with a more general type of network structures, to
build link models and to train them on large-sized real data.

In principle, there are two different kinds of information used to learn a link
model for link prediction. One is the information of network entities such as
nodes of the networks. The methods falling in this category usually use the in-
formation of a pair of nodes to induce the label of having or not having a link

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part II, LNAI 6912, pp. 517–532, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

518 C.H. Nguyen and H. Mamitsuka

[2,8,3]. Typical examples are sequences or profile information of genes, which
are used to predict links (edges) in their networks. By using only the informa-
tion on networks’ entities, the models of the networks assume an independent
and identical distribution of links. In other words, the structures of the links
themselves are completely ignored. This is an unrealistic assumption in many
domains where networks’ structures themselves have patterns, such as social
networks [12,13] and biological networks [18,1]. It is an objective of this work to
show that network structures themselves contain information for the task.

The second kind of information used to predict links is structures (topologies)
of the networks themselves. Similarity networks, due to its analogy to kernels
[10,7,17,16,11], can be modeled with kernels and therefore, there exist scalable
methods. Bipartite networks can also rely on kernels for each of their parts
together with aligning the parts [19]. However, it is more difficult to deal with
networks without similarity or relatedness semantics. A common network type is
modeled with latent feature models [14,1]. This network model includes similarity
networks and bipartite networks as special cases. For this type of networks, the
available models are usually the plain latent feature models or matrix based
models [5,1,13]. Training these models usually requires to generate latent features
explicitly. This is a very time-consuming process, usually does not applicable to
medium-sized networks. Another problem is that approximation in the training
process leads to suboptimal solutions. Without approximation, these models
do not scale to the sizes of real data, even for medium-sized networks. It is our
motivation to be able to learn a model of this general type of networks efficiently
and to avoid suboptimal solutions.

Fig. 1. Given an adjacency matrix as input, the method embeds cells (links or nonlinks)
into a feature space and using classification to infer new links

We provide a kernel method to link prediction problem using network struc-
tures for the network structures modeled with latent features. The overall de-
scription of the method is depicted in Figure 1. We design kernels to encode the
structures implicitly, without the need of generating the latent features them-
selves. The idea is to give high kernel values to the pairs of links that potentially
share latent features. We show how suitable the kernel is to sparse networks. By
not inducing the latent feature directly, our method is much faster compared
to the long execution times faced by the methods that explicitly induce latent
features. Our method also gives a globally optimal solution as opposed to the
other methods. Nonlinearity can be incorporated into the model seamlessly. For

Kernels for Link Prediction with Latent Feature Models 519

these advantages, our method gives a very high predictive performance for link
prediction problems and applicable to real datasets of large sizes.

The paper is organized as follows. We describe the generative model of net-
works’ links with latent features in Section 2. We then develop our kernels for
this model in Section 3. We visualize the idea of the kernels for this model in
Section 4. We show our application in protein-protein interaction networks in
Section 5 and conclude the paper.

2 Latent Feature Models of Graphs

2.1 Biological Motivation

An example is that a protein (node) is a collection of domains (features). A
protein-protein interaction (PPI) is caused by an interaction between two do-
mains from the two proteins [4]. However, the knowledge of domain may be
incomplete, and domain-domain interaction is far less understood. Therefore,
we wish to incorporate the domain-domain interaction knowledge in an implicit
way. Given enough links, we want to infer from many pairs of interacting pro-
teins’ common features that play the role of domains and some pairs of features
are likely to interact for PPI task.

2.2 Latent Feature Models of Graphs

We describe a latent feature model of graphs as also appeared in [13]. In this
model, a link (edge) in the graph is generated by the relation between the latent
features of the adjacent nodes. Denote A ∈ R

n×n as the adjacency matrix of
the graph. In general, A can be any real matrix. For our special purpose of
modeling undirected networks, we assume that A is a binary symmetric matrix.
Denote F ∈ R

n×d as a binary matrix where each row is a d-dimensional vector of
latent features. Denote W ∈ R

d×d as a real matrix encoding strength of feature
interactions. That is, Wij encodes the strength of interaction between the ith

feature and the jth feature. We define that (F ,W) is a latent feature model for
A when

A = FWFT . (1)

It is possible that there are several causes for a link but we only record one link
(existence of a link rather than multiplicity of the link). Therefore, the equality
in the equation (1) is replaced by the element-wise operator min(x, 1) where x
is the entry of the right hand side of the equation (1). It can be rewritten as
follows

A = min(FWFT , 1). (2)

Simulation Example: The idea of latent feature model is depicted in Figure
2. In this example, the set of nodes have three latent features, with the first two
nodes has two features. As for the feature interaction matrix, it indicates that
the first and the second features interact, also the third feature interact with
itself.

520 C.H. Nguyen and H. Mamitsuka

1 2 3

2

4

6

8

10

12

14

16

1 2 3

1

2

3

2 4 6 8 10 12 14 16

1

2

3

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Fig. 2. FWF T → A: the adjacency of the graph (rightmost) is generated by the three
matrices: the latent feature matrix (F - leftmost), the feature interacting matrix (W)
and the transpose of the latent feature matrix (F T). A black cell indicates a positive
entry and a white cell indicates a 0 entry. In our latent feature model, product of the
first three matrices generates the last one.

For the benefits of using latent feature models instead of latent class models,
we refer to [13] for details. The following properties are observed.

– Each entry of W generates a subgraph given F . The overall generated graph
is a superimposition of these subgraphs. This makes the model an additive
one.

– If W is diagonal, then the generated graph can be decomposed as a set of
cliques. This is a model of similarity graph.

– If W is symmetric, then the generated graph is symmetric. It is usually used
to encode undirected graphs.

– If F has exactly one nonzero entry in each row (such as the ones generated
by Chinese Restaurant Processes (CRP)), then generating F is equivalent
to clustering of nodes.

– If the nodes can be divided into two groups, each with a separate set of
features, and W has only interactions of features from the two different sets,
then the generated graph is bipartite.

These properties make latent feature models general generative models for graphs.

2.3 Ideal Kernels

Given a latent feature model as a generative model of graphs, one wish to define
a kernel that encodes the similarity of the nodes using this model. The semantic
similarity of two nodes under this model is the amount of latent features they
share, weighted by the importance of each feature. Therefore, we define the ideal
kernels as follows.

Definition (Ideal kernels). Define the set of ideal kernels for a latent feature
model of nodes F to be K = {K∗(D)}D, with D ∈ R

d×d is any diagonal matrix
with positive entries, and

K∗(D) = FDFT . (3)

A kernel value K∗(D)ij = FiD(Fj)T is the weighted sum of the number of
common feature between the i-th and j-th nodes. However, since latent feature

Kernels for Link Prediction with Latent Feature Models 521

models are hardly obtained, the ideal kernels are not available. Any kernel de-
fined from data with latent feature models should be close to some ideal kernels
in some senses.

3 Link Kernels with Latent Features

We describe our kernel method to link prediction given the latent feature model
assumption of the graph structures. The idea is to use the model to derive a
kernel between all pairs of the nodes (called link kernel). We define the following
terms: a link is considered as a positive pair of nodes while a negative pair of
nodes encodes the non-existence of a link (nonlink).

Input: Adjacency matrix A.

1. Construct a node kernel Kn following latent feature models.
2. Construct a link kernel K based on Kn.
3. Learn a SVM on K.

Output: New adjacency matrix based on the SVM.

Fig. 3. Network Structure based Link Prediction

The link prediction problem is then formulated as a binary classification prob-
lem. In the end, we classify the two classes, link class and nonlink class using
Support Vector Machines. The overall strategy is in Figure 3.

The kernel between pairs is based on the kernel between nodes themselves
(called node kernel). We first describe the node kernel (Kn) that encodes the
latent feature model, its relations to ideal kernels in sparse graphs, and then the
link kernel.

3.1 Node Kernels with Latent Features

As latent feature models are the generative models of graphs, we wish to define
the similarity of two nodes as the likelihood of having common latent features.
This is inherently different from similarity models where similarity means the
likelihood of reaching the other node through random walks [12]. However, latent
features are implicit, we must estimate the similarity, in form of kernels, between
nodes empirically. Knowing that nodes with common features tend to link to
common neighbors in latent feature models, we define the basic node kernels as
the amount of common neighbors of the nodes, as follows.

Kn = norm(AAT), (4)

522 C.H. Nguyen and H. Mamitsuka

where norm indicates the normalization operator to make the diagonal elements
all 1. Specifically,

(Kn)ij =
(AAT)ij√

(AAT)ii(AAT)jj

. (5)

A special case of this kernel is when all the nodes have exactly one feature (such
as generated by CRP), then Kn(a, b), for any node a and b, is either 1 or 0,
indicating if they have the feature in common or not. An implication is that in
networks where latent features are expected to be sparse, Kn behaves similarly
to this extreme case, showing a good indication of common latent features.

Given the basic node kernel, additional tricks can be applied on top of this
kernel to make new families of kernels. Diffusion kernels and exponential kernels
on top of Kn still conserve the idea of latent features. Of course, the higher the
exponential we take on Kn the looser the idea can be kept. However, please note
that the most general version of spectral transform [11] is not guaranteed to
conserve the latent feature assumption.

Note that this node kernel can be one of many terms in other kernels for
similarity graphs such as path-based [15,10,7,12]. However, we find that our
proposed kernel in particular encodes the latent feature model that is suitable
for our problem.

3.2 Relation to Ideal Kernels on Sparse Graphs

When the graphs are sparse (in our applications), sparse models are required to
model them. The following propositions show the relationship between the node
kernel Kn and the ideal kernels when the models are sparse. Denote Si as the
set of latent features of node i.

Proposition 1 (Positivity). If Si∩Sj �= ∅ (two nodes i and j share at least one
latent feature) and that feature interacts with another feature, then (AAT)ij > 0,
therefore (Kn)ij > 0.

Proof. The proof can be easily seen because when they share a feature, they
have a common nonempty neighborhood and therefore, (Kn)ij > 0. ��
This shows that if the values of ideal kernels on two nodes are positive, the value
of Kn is positive as well. This means that whenever the two nodes are similar
(positive kernel value) in the model, the kernel Kn can recognize that. This is
useful for sparse graphs (causing sparse kernels), Kn is not sparser than any
ideal kernel.

Proposition 2 (Monotonicity). Suppose that the edges have the same amount
of neighbors in the sense that (AAT)ii(AAT)jj = (AAT)kk(AAT)ll. If (Si∩Sj) ⊇
(Sk ∩ Sl) then (Kn)ij ≥ (Kn)kl.

The first assumption is about the equal amounts of neighbors for the two pairs
of nodes. The amount of neighbors of a pair of nodes is defined to be the product

Kernels for Link Prediction with Latent Feature Models 523

of numbers of its adjacent nodes. The conclusion is that, the more latent features
they share, the higher the kernel value is. This is a property of the ideal kernels
by the way they are defined, showing an analogy of Kn to ideal kernels.

Proof. As (Si ∩Sj) ⊇ (Sk ∩ Sl), the common neighborhood of the nodes i and j
is a superset of the the common neighborhood of the nodes k and l. Therefore,
(AAT)ij ≥ (AAT)kl.

(Kn)ij =
(AAT)ij√

(AAT)ii(AAT)jj

≥ (AAT)kl√
(AAT)ii(AAT)jj

= (Kn)kl (6)

from the definition of the node kernel in (4). ��

Lemma 1 (One feature interaction). For any latent feature model (F ,W),
there exists another latent feature model (F

′
,W

′
) that gives (i) the same adja-

cency matrix, (ii) the same set of ideal kernels and (iii) the feature interaction
matrix is nonzero on at most one of its entries in any row and column.

In other words, there exists another mathematically equivalent model giving the
same ideal kernel sets and adjacency matrix in which each feature interacts with
only one another feature.

Proof. The idea of the proof is to place a nonzero wij in one new row and column
of W

′
and duplicate the columns of F when necessary to make F

′
, keeping

the adjacency matrix unchanged. Supposed that the (unnormalized) adjacency
matrix A is computed by

A = FWFT =
∑

ij

wijF·i(F·j)T , (7)

where F·i is the i-th column of F.
Denote I = {(i, j)} that wij �= 0 then

A =
∑

(i,j)∈I

wijF·i(F·j)T . (8)

We then construct the F
′

and W
′

by sequentially appending feature columns
and feature interaction matrix values in the formula 8 as follows.

1. Mark all the indices in I as available.
2. Initialize F

′
and W

′
to empty matrices.

3. Go the the next available index in I, pick the pair wij , then
– If i = j, meaning that wii indicates a self interacting feature, then append

the feature vector F·i at the end of the already constructed F
′
. Append

a new row and column of W
′
with the only nonzero element wij on the

diagon of W
′
. Mark the index of wij in I unavailable. Repeat the process

from step 3.

524 C.H. Nguyen and H. Mamitsuka

– If W is symmetric (A is symmetric) then wij = wji. Append the feature
vectors F·i and F·j to the end of F

′
. Suppose the size of W

′
is k, then

append two new rows and columns of W
′
with the only nonzero elements

are wij at W
′
k+1,k and W

′
k,k+1. Mark the indices of wij and wji in I

unavailable. Repeat the process from step 3.
– If W is not symmetric then append the features as the symmetric case

to F
′
. For W

′
, only one nonzero element is added to W

′
k,k+1. Mark the

index of wij in I unavailable. Repeat the process from step 3.

By doing this, then

F
′
W

′
(F

′
)T =

∑

(i,j)∈I

wijF·i(F·j)T = FWFT = A. (9)

Also, each row or column of W
′
has at most one nonzero entry by the way W

′

is constructed. Since the set of columns of F
′
is the same as F ’s, the set of ideal

kernels are the same (only different by feature weighting). ��
Hence, we have constructed a new model with a feature either interacts or is
interacted with at most one another feature. This is to say that there is a math-
ematically equivalent model that each feature only interacts with one another
feature. We use this fact to facilitate our sparsity reasoning as follows.

Proposition 3 (Ideal condition). Kn is an ideal kernel (Kn ∈ K) if WFT

has all row vectors uncorrelated.

Proof. When WFT has row vectors uncorrelated, then: WFT × (WFT)T is
diagonal. Denote D = WFT × FWT , then:

Kn(A) = FWFT × FWT FT = FDFT . (10)

Since D is diagonal with nonnegative entries, Kn ∈ K. ��
Corollary 1. If W is an unmixing matrix of an Independent Component Anal-
ysis model for FT , then Kn ∈ K.

Corollary 2. If each node has only one latent feature, such as F is generated
by a Chinese Restaurant Process or any class-based model in a model that W
has only one nonzero entry in each row or column (guaranteed by Lemma 1),
then Kn ∈ K.

This is from the fact that WFT has only one nonzero entry in each column,
therefore any pair of row vectors would have no nonzero entries in common.
This makes row vectors of WFT uncorrelated.

When the model is sparse, Kn is close to an ideal kernel as follows. Denote
E = FT F , therefore Elk = (F·l)T F·k is number of nodes having both features
l and k. When l �= k, we expect Elk to be small for sparse models. Given the
Lemma 1, we assume that Wil and Wjk are the only nonzero entries in rows i

Kernels for Link Prediction with Latent Feature Models 525

and j. Recall that Kn = FDFT = FWEWT FT . Since the entries of W are
scalars, Dij = WilWjkElk means that D2

ij/(DiiDjj) = E2
lk/(EllEkk). When F is

sparse, off-diagonal elements of E is much smaller than diagonal ones (diagonally
dominant), the same thing can be said for D. This means that D is as diagonally
dominant as E. We show quantitatively how close D is to an ideal kernel.

Proposition 4 (Approximation). When the model is sparse in the sense that
(
∑

i�=j |WilWjkElk|p) 1
p ≤ δ for some small δ ∈ R, p ≥ 0, there exists an ideal

kernel FD̂FT that is close to Kn in the sense that ‖ D − D̂ ‖p≤ δ.

In the condition (
∑

i�=j |WilWjkElk|p) 1
p , an entry WilWjkElk is the weighted the

number of nodes having the two features l and k (should also be small for sparse
models, l �= k inplies i �= j). ‖ · ‖p is the p-norm of a matrix.

Proof. We construct D̂ as a diagonal matrix with D̂ii = Dii = W 2
ilEll. Given

that Dij = WilWjkElk, then

‖ D − D̂ ‖p= (
∑

i�=j

|Dij |p) 1
p = (

∑

i�=j

|WilWjkElk|p) 1
p ≤ δ. (11)

This shows that the more sparse the model, the closer D is to ideal kernels. ��
When a model is sparse in the sense that each node has very few latent features,
each latent feature interacts with one another features (by the Lemma 1), Kn

should be close to the ideal kernel FD̂FT since FD̂FT is linear in D̂.
All these properties make the kernel Kn a good approximation of ideal ker-

nels in sparse models. Sparse models are suitable for our applications in sparse
networks (nodes with small degrees). We elaborate more in the application part.

3.3 Link Kernels with Latent Features

Given the node kernel Kn, a kernel between two links is usually defined to be
the combined similarity between the pairs of nodes of the links. We choose the
widely used and experimentally justified tensor product pairwise kernel [2] to be
the kernel for pairs as follows.

K((a, b), (c, d)) = Kn(a, c) · Kn(b, d) + Kn(a, d) · Kn(b, c). (12)

Here is the kernel for the two pairs of nodes (a, b) and (c, d). Denote ai, bj as
the features of a and b respectively in the feature space of Kn, then the feature
space of K consists of the following features for a pair (a, b):

aibj + ajbi, (13)

as in [2]. Given that the node kernel Kn is supposed to be the likelihood of
having common latent features, link kernel indicates the chance of having two
pairs of nodes with common features. For example, when the pair {a, c} share
common features and so do the pair {b, d}, K((a, b), (c, d)) is high.

Nonlinearity can be incorporated into this kernel, such as Gaussian kernels
on top of it.

526 C.H. Nguyen and H. Mamitsuka

4 Demonstration

We show the idea of our kernel using the simulation example in the previous
section. Suppose that we observe an incomplete graph of the example as in the
adjacency matrix in Figure 4 (80% of the links are observed). We show step by
step the idea of node kernels and latent features.

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Fig. 4. Adjacency ma-
trix of an incomplete
graph from the simula-
tion example

−0.4
−0.2

0

−0.3−0.2−0.100.10.20.30.4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Fig. 5. Visualing the graph with the node kernel. The cyan
edges are the observed links of the graph while the red edges
are the missing ones according to the model. We observed
that the red ones follow the same patterns as the cyan ones.

Node Kernel: We visualize the nodes using the node kernel defined in (4). We
use kernel PCA and plot the nodes using the first three components in Figure
5. The nodes in the figure are the nodes of the graphs. The cyan edges are
the observed links. The red edges are the missing links according to the model.
First, we can observe that the cyan edges follow certain patterns of direction and
endpoints. Another point can be observed is that the red edges follows the same
patterns (endpoints lie in clusters, edges connect the same cluster pairs). This
is exactly what we want in learning, testing data having the same distribution
as training data. What left to be done is to keep these patterns in some spatial
representations of the edges.

Latent Features: We look into the model to show the distribution of nodes with
features. We label the nodes with the same feature in shaded ellipses in Figure 6.
The labels of the eclipses, F1, F2 and F3 correspond to the three latent features
in the example. We can observe that the node kernel makes these nodes close to
each other. The nodes with two features (F1 and F3) lie somewhere in between
the nodes with only one of the two features (F1 or F3).

Negative Links: As shown in Figure 5 that the observed edges and missing
edges have similar patterns. However, we use SVM to classify, we also wish the
negative class (nonlink) not to follow the patterns. Therefore, we show all the
edges that belong to the nonlink class in Figure 7. We can observe that they do
not follow that patterns of the positive class (the same endpoints but connecting
different cluster pairs from positive links’).

Kernels for Link Prediction with Latent Feature Models 527

Fig. 6. The positive class of links. The
nodes are grouped by their common latent
features. It shows that nodes sharing more
common features tend to group together.

Fig. 7. The set of nonlink class. Com-
pared to the link class, the nonlink class
has totally different positions and ori-
entations.

The demonstration shows that our designed node kernel successfully discovers
the patterns of the link class as opposed to the nonlink class. It tends to group
the nodes with common features close to each other as we designed. We wish to
clarify the difference of our method from the other methods such as using Chinese
Restaurant Processes or Indian Buffet Processes [14,9,13]. These methods group
these nodes together explicitly while our method use a soft version of putting
them close in a space. We believe that this is the key to be robust, allowing the
inference step to be globally optimal and computationally efficient.

5 Application on Non-similarity Networks with Latent
Features

Our targeted application is to model network structures with the latent feature
models. Even though the model includes similarity networks as special cases, our
target is to model more difficult ones, which are not similarity ones. Social net-
works are usually similarity ones, therefore not the prime target of our method.
The PPI networks are the typical examples as it is non-similarity (we also show
the experiments for this in the following subsection). There are other networks
studied in Bioinformatics but they are too sparse and not large enough to study
structures statistically.

We used the PPI networks of yeast and fruit-fly from DIP database for their
largest hand-curated networks available. For statistical study, we attracted only
the largest connected component of the network in which the degree of each node
is not less than m (minimum degree of nodes). In our experiments, we show all
the values of m from 1 to 10 (8 for fruit-fly). For yeast, the subnetwork with
m = 1 has 4762 nodes and 21836 links, and the subnetwork with m = 10 has 756
nodes and 8924 links. For fruit-fly, the subnetwork with m = 1 has 6644 nodes
and 21501 links, and the subnetwork with m = 8 has 713 nodes and 5243 links.
This is the size of data that we expect and we will show latter on that the other
methods based on latent feature inference do not scale to this size.

528 C.H. Nguyen and H. Mamitsuka

Real PPI networks are sparse: less than 20% of the nodes in yeast and none
in fruit-fly have degrees of 10 or more. This is the reason for sparsity analysis in
Section 3.2. The sparse networks require the models to be sparse as well.

For each subnetwork, we used SVM (C = 0.001, but the results are the same
for a range of C from 0.0001 to 0.1) as the classifier for our link kernels. We
showed the average AUC score of different train/test splits with the ratio 90/10.
We first showed the appropriateness of the assumption of latent features as
opposed to the usual assumption of similarity. We then showed the time required
to build one model to reflect the difference in execution times or our method
compared to Indian Buffet Process (IBP) as described in [13] (with parameter
α = 3, which we found to be a good trade-off to be able to train on our smallest
datasets and induce a model with enough number of latent features). We then
showed the performance of link kernels in link prediction. We also compared to
sequence based link prediction to show the advantage using network structures.

Fig. 8. Latent feature versus similarity assumption: AUC of the direct method for link
prediction (vertical) at different minimum degree of the network (horizontal axis)

5.1 Latent Feature versus Similarity

We show the fitness of the latent feature model on yeast PPI networks as opposed
to the similarity model in Figure 8. We used the direct method [18] to predict
links based on the two models. The idea of the direct method is simply nearest
neighbor classifiers. For similarity assumption, probability of having link between
two nodes is proportional to how similar they are in their connectivity patterns
(called SimNN). On the other hand, with latent feature model, probability of a
link between two nodes is determined by the class of its nearest neighbor in the
link kernel (called LK-NN), not the kernel between nodes.

The figure showed a significantly different AUC scores of the two methods
on yeast’s networks. LK-NN was usually much higher (around 0.1 and more).
It showed that latent feature model was more suitable to PPI networks than
the conventional similarity one. The exception was at the subnetwork with the
minimum degree of nodes of one. Since we were using only network structures,
the nodes with degree one may not contribute to the network structure in these

Kernels for Link Prediction with Latent Feature Models 529

models. Therefore, results for the subnetworks with larger nodes’ degrees demon-
strated the reasonability of the assumptions used. For this reason, the latent
feature assumption was more reasonable than similarity assumption here, and
the methods for similarity networks were not recommended to use.

5.2 Execution Time

We show execution time required to build one model using our link kernels in
Figure 9. To compare to IBP, we also show the execution time in the process of
building one model before it burns in in Figure 10. For the long times required
by IBP, we only show the execution time for the smallest subnetwork (minimum
degree of 10 with only 756 nodes), which is supposed to require the least time
among all the subnetworks.

Fig. 9. The time required to build one
model using link kernels (in seconds) at
subnetworks with different minimum de-
grees. Note that for the smallest subnet-
work, the execution time is less than 90
seconds.

Fig. 10. The time to train an IBP model
of the smallest subnetwork with m = 10.
The vertical axis is the log-likelihood ob-
tained from the model during the training
process as a function of time in the hori-
zontal axis.

We can see that the link kernels required less than 90 seconds for the smallest
subnetwork, and increased to less than 500 seconds for the largest subnetwork
of 4762 nodes. On the other hand, IBP required many hours for the smallest
subnetwork of 756 nodes and did not burn-in on larger ones within one day. We
conclude that our method using kernel saved many orders of magnitude the time
to train one model, making training on medium-sized networks possible. This is
a key advantage of our kernel method.

5.3 Link Prediction Results

We compared the prediction ability of our method using link kernel to the base-
line of using IBP as in [13] in Figure 11. The results are for different subnetworks
with different minimum degrees. For small minimum degrees, the subnetworks
have higher coverage on the whole network while the large minimum degrees

530 C.H. Nguyen and H. Mamitsuka

Fig. 11. Link prediction results on yeast PPI network: AUC of link prediction with
different methods (vertical) at different minimum degrees of the network (horizontal
axis). Note that IBP does not scale with larger datasets, its results are not available.

will extract denser parts of the network, making statistical inference on this
part more reliable. We show two versions of our link kernels: linear kernels and
Gaussian kernels (γ = 2). The incomplete results of IBP was due to the fact
that experiments took too much time (more than one day) to train one model.

We can read from yeast’s results in Figure 11 that linear kernels had similar
AUC scores with IBP. However, when using the nonlinear version of Gaussian
kernels, AUC scores were significantly higher. We conclude that our kernel based
method provided a significantly higher AUC scores than that of IBP. One sur-
prise was that even using only network topology, we archived high AUC scores
close to 0.9. These scores were much higher than random prediction. Given that
the PPI networks are known to be noisy and incomplete, this experiment showed
that there are patterns of the topology of the PPI networks. It also showed that
our method was effective to encode these patterns.

Fig. 12. Link prediction results on fruit-fly PPI network: AUC of link prediction with
different methods (vertical) at different minimum degrees of the network (horizontal
axis). IBP results are missing due to their time consumption.

Kernels for Link Prediction with Latent Feature Models 531

Similarly, we can see in the fruit-fly’s results in Figure 12 that our method
based on kernels outperformed IBP. The results on fruit-fly’s networks were much
lower than on yeast due to the fact that fruit-fly’s ones are sparser, involving
more proteins and there are no proteins with degrees of 10 or more.

5.4 Comparison to Sequence-Based Prediction

As opposed to using network structures, traditional methods use nodes’ informa-
tion such as protein sequences. Therefore, we also compared to spectrum kernels
on sequences to predict links in the same manner. The results were not shown in
the Figure 11 and 12 because they ranged differently. The highest AUC score on
any subset for yeast was 0.71 ± 0.008 and 0.65 ± 0.016 for fruit-fly. We observe
that network structures gave statistically significantly higher AUC scores (with
t -tests at 0.01 level). This might be due to the fact that kernels based on se-
quences contain too much redundant information, since sequence-based kernels
use all k-mers across the protein sequences. Sequence based kernels are redun-
dant as only small parts determine its interaction ability to others.

6 Conclusion

We studied the problem of predicting new links using network structures in a
more general type of networks. Specifically, we studied the networks that can
be modeled by generative processes with latent features. This is a more general
model of networks than the usually assumed similarity networks in most of the
applications. In order to model real networks of medium or large size, we used
kernels and casted the problem as a supervised learning one, inheriting optimal-
ity, efficiency and nonlinearity of the kernel framework. We showed the suitability
of the kernels on sparse networks. We applied to the non-similarity networks of
protein-protein interactions. The results showed that our kernel-based method
gave a much higher performance than direct latent feature inference by IBP. Our
method was also many orders of magnitude faster, and scaled to the sizes of real
networks, unlike IBP. It was also shown that network structures gave higher re-
sults than information of the nodes. We conclude that for sparse networks with
latent feature models, our method is able to utilize the relevant information
in network structures to give faster, more scalable solutions, and significantly
higher performances.

Acknowledgments. C.H.N. is supported by JSPS. H.M. has been partially
supported by BIRD, JST (Japan Science and Technology Agency). We acknowl-
edge anonymous reviewers for helpful comments.

References

1. Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P.: Mixed membership stochastic
blockmodels. Journal of Machine Learning Research 9, 1981–2014 (2008)

2. Ben-Hur, A., Noble, W.S.: Kernel methods for predicting protein-protein
interactions. In: ISMB (Supplement of Bioinformatics), pp. 38–46 (2005)

532 C.H. Nguyen and H. Mamitsuka

3. Bleakley, K., Biau, G., Vert, J.-P.: Supervised reconstruction of biological networks
with local models. In: ISMB/ECCB (Supplement of Bioinformatics), pp. 57–65
(2007)

4. Deng, M., Mehta, S., Sun, F., Chen, T.: Inferring domain-domain interactions
from protein-protein interactions. In: Proceedings of the Sixth Annual International
Conference on Computational Biology, pp. 117–126. ACM Press, New York (2002)

5. Ding, C.: Orthogonal nonnegative matrix tri-factorizations for clustering. In:
SIGKDD, pp. 126–135 (2006)

6. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive
Computation and Machine Learning). The MIT Press, Cambridge (2007)

7. Kandola, J.S., Shawe-Taylor, J., Cristianini, N.: Learning semantic similarity. In:
NIPS, pp. 657–664 (2002)

8. Kato, T., Tsuda, K., Asai, K.: Selective integration of multiple biological data for
supervised network inference. Bioinformatics 21(10), 2488–2495 (2005)

9. Kemp, C., Tenenbaum, J.B., Griffiths, T.L., Yamada, T., Ueda, N.: Learning sys-
tems of concepts with an infinite relational model. In: Proceedings of the 21st
National Conference on Artificial Intelligence, vol. 1, pp. 381–388. AAAI Press,
Menlo Park (2006)

10. Kondor, R.I., Lafferty, J.D.: Diffusion kernels on graphs and other discrete input
spaces. In: ICML, pp. 315–322 (2002)

11. Kunegis, J., Lommatzsch, A.: Learning spectral graph transformations for link pre-
diction. In: ICML 2009: Proceedings of the 26th Annual International Conference
on Machine Learning, pp. 561–568. ACM, New York (2009)

12. Liben-Nowell, D., Kleinberg, J.M.: The link prediction problem for social networks.
In: CIKM, pp. 556–559 (2003)

13. Miller, K., Griffiths, T., Jordan, M.: Nonparametric latent feature models for link
prediction. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C.K.I., Culotta,
A. (eds.) Advances in Neural Information Processing Systems, vol. 22, pp. 1276–
1284 (2009)

14. Navarro, D.J., Griffiths, T.L.: A nonparametric bayesian method for inferring fea-
tures from similarity judgments. In: NIPS, pp. 1033–1040 (2006)

15. Newman, M.E.J.: Clustering and preferential attachment in growing networks.
Physical Review E 64(2), 025102+ (2001)

16. Shimbo, M., Ito, T., Mochihashi, D., Matsumoto, Y.: On the properties of von
neumann kernels for link analysis. Machine Learning Journal 75(1), 37–67 (2009)

17. Smola, A.J., Kondor, R.: Kernels and regularization on graphs. In: Schölkopf, B.,
Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 144–158.
Springer, Heidelberg (2003)

18. Vert, J.-P., Yamanishi, Y.: Supervised graph inference. In: NIPS (2004)
19. Yamanishi, Y.: Supervised bipartite graph inference. In: NIPS, pp. 1841–1848

(2008)

	Kernels for Link Prediction with Latent Feature Models
	Introduction
	Latent Feature Models of Graphs
	Biological Motivation
	Latent Feature Models of Graphs
	Ideal Kernels

	Link Kernels with Latent Features
	Node Kernels with Latent Features
	Relation to Ideal Kernels on Sparse Graphs
	Link Kernels with Latent Features

	Demonstration
	Application on Non-similarity Networks with Latent Features
	Latent Feature versus Similarity
	Execution Time
	Link Prediction Results
	Comparison to Sequence-Based Prediction

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

