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Abstract

We study the problem of evaluating the goodness of
a kernel matrix for a classification task. As kernel
matrix evaluation is usually used in other expensive
procedures like feature and model selections, the
goodness measure must be calculated efficiently.
Most previous approaches are not efficient, except
for Kernel Target Alignment (KTA) that can be cal-
culated in O(n2) time complexity. Although KTA
is widely used, we show that it has some serious
drawbacks. We propose an efficient surrogate mea-
sure to evaluate the goodness of a kernel matrix
based on the data distributions of classes in the fea-
ture space. The measure not only overcomes the
limitations of KTA, but also possesses other prop-
erties like invariance, efficiency and error bound
guarantee. Comparative experiments show that the
measure is a good indication of the goodness of a
kernel matrix.

1 Introduction

Kernel methods, such as Support Vector Machines, Gaussian
Processes, etc., have delivered extremely high performance
in a wide variety of supervised and non-supervised learning
tasks [Schölkopf and Smola, 2002]. The key to success is that
kernel methods can be modularized into two modules: the
first is to map data into a (usually higher dimensional) feature
space, which is a powerful framework for many different data
types; and the second is to use a linear algorithm in the fea-
ture space, which is efficient and has theoretical guarantees
[Shawe-Taylor and Cristianini, 2004]. While many linear al-
gorithms can be kernelized, the major effort in kernel meth-
ods is put into designing good mappings defined by kernel
functions φ:

φ : X → H. (1)

X is the original data space and H is the feature space, which
is a Reproducing Kernel Hilbert Space (RKHS). While H
may be a many-dimensional space, the algorithm takes ad-
vantage of the kernel trick to operate solely on the kernel ma-
trix induced from data:

K = {〈φ(xi), φ(xj)〉}i=1..n,j=1..n. (2)

The goodness of kernel function can only be seen from the
goodness of the kernel matrix K; therefore, measuring the
goodness of K is of primary interest in various contexts.

There are many ways to measure the goodness of a ker-
nel matrix (kernel function) for a classification task, differ-
ently reflecting the expected quality of the kernel function.
Commonly used measures are regularized risk [Schölkopf
and Smola, 2002], negative log-posterior [Fine and Schein-
berg, 2002] and hyperkernels [Ong et al., 2005]. These mea-
sures do not give a specific value, but only assert certain cri-
teria in form of regularities in certain spaces, for example,
RKHS or hyper-RKHS. All of these kernel measures require
an optimization procedure for evaluation. Therefore, they
are prohibitively expensive to be incorporated into other ex-
pensive procedures like model and feature selections. Other
techniques like cross validation, leave-one-out estimators or
radius-margin bound can also be considered as expected qual-
ity functionals. Like the previously mentioned works, they
require the whole learning process.

To be used in feature and model selection processes, good-
ness measures of kernel matrices must be efficiently calcu-
lated. To the best of our knowledge, the only efficient kernel
goodness measure is Kernel Target Alignment [Cristianini et
al., 2002]. Due to its simplicity and efficiency, KTA has been
used in many methods for feature and model selections. Some
notable methods are learning conic combinations of kernels
[Lanckriet et al., 2004], learning idealized kernels [Kwok and
Tsang, 2003], feature selection [Neumann et al., 2005] and
kernel design using boosting [Crammer et al., 2002].

In this work, we first analyze KTA to show that having
a high KTA is only a sufficient condition to be a good ker-
nel matrix, but not a necessary condition. It is possible for a
kernel matrix to have a very good performance even though
its KTA is still low. We then propose an efficient surrogate
measure based on the data distributions in the feature space
to relax the strict conditions imposed by KTA. The measure
is invariant to linear operators in the feature space and re-
tains several properties of KTA, such as efficiency and an er-
ror bound guarantee. The measure is closely related to some
other works on worst-case error bounds and distance metric
learning. We show experimentally that the new measure is
more closely correlated to the goodness of a kernel matrix,
and conclude finally with some future works.
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2 Kernel Target Alignment

Kernel target alignment is used to measure how well a kernel
matrix aligns to a target (or another kernel) [Cristianini et al.,
2002]. Alignment to the target is defined as the (normalized)
Frobenius inner product between the kernel matrix and the
covariance matrix of the target vector. It is interpreted as co-
sine distance between these two bi-dimensional vectors. We
first introduce some notations.

Training example set {xi}i=1..n ⊂ X with the correspond-
ing target vector y = {yi}T

i=1..n ⊂ {−1, 1}n. Suppose that
y1 = .. = yn+

= 1 and yn++1 = .. = yn++n
−

= −1; n+

examples belong to class 1, n− examples belong to class −1,
n+ + n− = n. Under a feature map φ, the kernel matrix is
defined as:

K = {kij = 〈φ(xi), φ(xj)〉}i=1..n,j=1..n. (3)

Frobenius inner product is defined as:

〈K, K∗〉F =

n∑
i=1

n∑
j=1

kijk
∗
ij . (4)

The target matrix is defined to be y.yT . Kernel target align-
ment of K is defined as the normalized Frobenius inner prod-
uct:

A(K, y) =
〈K, y.yT 〉F√

〈K, K〉F 〈y.yT , y.yT 〉F
. (5)

The advantage, which makes KTA popular in many feature
and model selection methods, is that it satisfies several prop-
erties. It is efficient as its computational time is O(n2). It is
highly concentrated around its expected value, giving a high
probability that a value is close to the true alignment value.
It also gives some error bounds, meaning that when KTA is
high, one can expect that the error rate using the kernel must
be limited to a certain amount.

We claim that having a very high value A(K,y) is only a
sufficient condition, but not a necessary condition, for K to be
a good kernel matrix for a given task specified by the target
y. As 0 � A(K, y) � 11, when A(K, y) = 1, the two bi-
dimensional vectors K and y.yT are linear. Up to a constant,
the optimal alignment happens when kij = yi.yj . This is
equivalent to two conditions:

1. All examples of the same class are mapped into the same
vector in the feature space (kij = 1 for xi, xj in the same
class).

2. The mapped vectors of different classes in the feature
space are additive inverse (kij = −1 for xi, xj in differ-
ent classes).

It is a sufficient condition that having a high K, one can
expect good performance, as classes are collapsed into a point
in the feature space. Violating any of the conditions would
mean that KTA is penalized. However, it is not a necessary
condition as we analyze below.

The first condition implies that the within-class variance
penalizes KTA. However, there is a gap between the condi-
tion and the concept of margin in Support Vector Machines

1In [Cristianini et al., 2002], it is −1 � A(K, y). The inequality
here comes from the fact that K is positive semidefinite.

(SVMs). Varying data (in the feature space) along the separat-
ing hyperplane will not affect the margin. If data varies along
the perpendicular direction of the separating hyperplane, the
margin can be changed. However, KTA does not take into
account variances in different directions.

The second condition is too strict, and not applicable in
many cases, because it requires the mapped vectors of differ-
ent classes to be additive inverses of each other. Ideally, if
the kernel function maps all examples of a class to one vector
in the feature space, the kernel matrix should be evaluated as
optimal. This is the reason why having high KTA is only a
sufficient condition, but not a necessary condition. We use
some examples to show this limitation quantitatively.

Example 1 (best case): The kernel function φ maps all
examples of class 1 into vector φ+ ∈ H and all examples
of class −1 into vector φ− ∈ H . Assume that φ+.φ+ =
φ−.φ− = 1 and φ+.φ− = α, −1 � α < 1. For any α, the
kernel matrix K should be evaluated as optimal, as it is in-
duced from an optimal feature map. However, its KTA value
is:

A(K, y) =
n2

+ + n2
− − 2n+n−α√

n2
+ + n2− + 2n+n−α2 ∗ n

. (6)

KTA values of these kernel matrices change as α varies
from 1 to −1, and any value in that range can be the KTA
value of a kernel matrix of an optimal feature function. As

limα→1 A(K, y) = (n+−n
−

)2

n2 , KTA ranges from
(n+−n

−
)2

n2

to 1 in this case.
Example 2 (worst case): The kernel function φ maps half

of the examples of each class into vector φ1 ∈ H and the
other half into vector φ2 ∈ H . Assume that φ1.φ1 = φ2.φ2 =
1 and φ1.φ2 = α, −1 � α � 1. For any α, the kernel ma-
trix K should be evaluated very low, as it is induced from the
worst kernel function, which fuses the two classes together
and has no generalization ability. However, its KTA value is:

A(K, y) =
(n+ − n−)2 1+α

2

n2 ∗
√

(1+α2

2 )
. (7)

As shown above, limα→1 A(K, y) = (n+−n
−

)2

n2 , which is the
same limit as the best case. We can see that KTA of this

case ranges from 0 to
(n+−n

−
)2

n2 . There is a similar caution

in [Meila, 2003]. As the best and the worst cases cover the
whole range of KTA values, any other case would coincide
with one of them. Therefore, KTA may mistake any case to
be either the best or the worst.

Example 3 (popular case): Consider the case when a ker-
nel function maps all examples into an orthant in the feature
space, inducing a kernel matrix with non-negative entries, i.e.
kij � 0. In this case:

A(K, y) �

√
n2

+ + n2−
n

. (8)

Proof can be derived by using the fact that kij � 0 and the
Cauchy-Schwarz inequality [Gradshteyn and Ryzhik, 2000].
Take a special case when n+ = n−, A(K, y) �

1√
2

. Re-

call that KTA of a kernel matrix ranges from 0 to 1, and the
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Figure 1: Data variance in the direction between class centers.

higher the better. This example means that these types of ker-
nel functions will have bounded KTA values, no matter how
good the kernel functions are. This is a drawback of KTA.
Unfortunately, this type of kernel function is extensively used
in practice. Gaussian kernels [Shawe-Taylor and Cristianini,
2004], and many other kernels defined over discrete structures
[Gartner et al., 2004] or distributions [Jebara et al., 2004], etc.
fall into this category.

The above examples show that KTA can mistake any ker-
nel matrix to be the best or the worst. KTA is always bound
to some numbers for many popular kernel matrices with pos-
itive entries (e.g., Gaussian, and many kernels for discrete
structures or distributions). KTA will disadvantage the use of
such kernels.

3 Feature Space-based Kernel Matrix

Evaluation Measure

In this section, we introduce a new goodness measure of
a kernel matrix for a given (binary classification) task,
named Feature Space-based Kernel Matrix Evaluation Mea-
sure (FSM). This measure should be computed on the ker-
nel matrix efficiently, and overcome the limitations of KTA.
Our idea is to use the data distributions in the feature space.
Specifically, two factors are taken into account: (1) the
within-class variance in the direction between class cen-
ters; and (2) relative positions of the class centers. These
factors are depicted in Figure 1. The first factor improves
the first condition of KTA, by allowing data to vary in cer-
tain directions. The second factor solves the problem im-
posed by the second condition of KTA. Let var be the total
within-class variance (for both classes) in the direction be-
tween class centers. Denote center of a class as the mean

of the class data in the feature space: φ+ =
Pn+

i=1
φ(xi)

n+
and

φ− =

P
n
i=n++1

φ(xi)

n
−

. Our evaluation measure FSM is de-

fined to be the ratio of the total within-class variance in the
direction between the class centers to the distance between
the class centers:

FSM(K, y) :=
var

‖ φ− − φ+ ‖ . (9)

3.1 FSM Calculation

We show that the evaluation measure can be calculated using
the kernel matrix efficiently with simple formulas. We first

calculate the within-class variance (of both classes) in the di-

rection between class centers. Denote e = φ
−
−φ+

‖φ
−
−φ+‖ as the

unit vector in this direction. The total within-class variance
of two classes in the direction is:

var = [

∑n+

i=1〈φ(xi) − φ+, e〉2
n+ − 1

]
1
2

+[

∑n

i=n++1〈φ(xi) − φ−, e〉2
n− − 1

]
1
2 .

(10)

We calculate the first term in equation (10), the total
within-class variance of the class +1 in the direction between
φ+ and φ−, denoted as var+.

(n+ − 1)var2
+ =

n+∑
i=1

〈φ(xi) − φ+, e〉2

=

∑n+

i=1〈φ(xi) − φ+, φ− − φ+〉2
(φ− − φ+)2

=

∑n+

i=1(φ(xi)φ− + φ2
+ − φ(xi)φ+ − φ+φ−)2

(φ− − φ+)2
.

(11)

We substitute φ+ =
Pn+

j=1
φ(xj)

n+
and φ− =

P
n
j=n++1

φ(xj)

n
−

into equation (11), and then we define some auxiliary vari-
ables as follows. For i = 1..n+:

• ai = φ(xi)φ+ =
Pn+

j=1
φ(xi)φ(xj)

n+
=

Pn+

j=1
kij

n+
,

• bi = φ(xi)φ− =

Pn
j=n++1

φ(xi)φ(xj)

n
−

=

Pn
j=n++1

kij

n
−

.

For i = n+ + 1..n:

• ci = φ(xi)φ+ =
Pn+

j=1
φ(xi)φ(xj)

n+
=

Pn+

j=1
kij

n+
,

• di = φ(xi)φ− =

Pn
j=n++1

φ(xi)φ(xj)

n
−

=

Pn
j=n++1

kij

n
−

.

Denote A =
Pn+

i=1
ai

n+
, B =

Pn+

i=1
bi

n+
, C =

Pn
i=n++1

ci

n
−

and

D =

P
n
n++1

di

n
−

. Hence, A = φ+φ+, B = C = φ+φ− and

D = φ−φ−. Therefore, (φ− − φ+)2 = A + D − B − C.
Plugging them into equation (11), then:

(n+ − 1)var2
+ =

∑n+

i=1(bi − ai + A − B)2

A + D − B − C
. (12)

We can use a similar calculation for the second term in equa-
tion (10):

(n− − 1)var2
− =

∑n

i=n++1(ci − di + D − C)2

A + D − B − C
. (13)

The proposed kernel matrix evaluation measure FSM, as
defined in formula (9), is calculated as:

FSM(K, y) =
var+ + var−√
A + D − B − C

. (14)

FSM(K, y) � 0, and the smaller FSM(K, y) is, the better
K is.

One can easily see that ai, bi, ci, di, A, B, C and D can
be all calculated together in O(n2) time complexity (one pass
through the kernel matrix). Therefore, the evaluation measure
is also efficiently calculated in O(n2) time complexity.
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3.2 Invariance

There are some properties of FSM(K, y) regarding linear
operations that make it closer to SVMs than KTA is.

Theorem 1: FSM(K, y) is invariant under translation,
rotation and scale in the feature space.

Sketch of proof: FSM(K, y) is scale invariant owing to
its normalization factor A + D − B − C. FSM(K, y) is
rotation and translation invariant, as it is built on the building
blocks of ai − bi and di − ci.

The performance of SVMs and other kernel methods are
unchanged under rotation, translation and scale in the feature
space. Therefore, it is reasonable to ask for measures to have
these properties. However, KTA is neither rotation invariant
nor translation invariant.

3.3 Error Bound

We show that for any kernel matrix, it is possible to obtain a
training error rate, which is bounded by some amount propor-
tionate to FSM(K, y). This means that a low FSM(K, y)
value can guarantee a low training error rate. In this case, we
can expect a low generalization error rate.

Theorem 2: There exists a separating hyperplane such
that its training error is bounded by:

FSMerr :=
FSM(K, y)2

1 + FSM(K, y)2
. (15)

Proof: We use a one-tailed version of Chebyshev’s in-
equality [Feller, 1971]. Consider the data distribution in the
direction between class centers. For each class, the data dis-
tribution has a mean of either φ+ or φ−, and the correspond-
ing variance var+ or var−. The following inequalities can
be derived:

Pr(〈φ − φ−,−e〉 � k.var−|φ ∈ class(−)) �
1

1 + k2

Pr(〈φ − φ+, e〉 � k.var+|φ ∈ class(+)) �
1

1 + k2
.

(16)

The separating hyperplane, which takes e as its norm vec-
tor and intersects the line segment between φ+ and φ− at the

point h such that
|h−φ+|
|h−φ

−
| = var+

var
−

, has the formula:

f(x) = e.x − e.
var−φ+ + var+φ−

var+ + var−
= 0. (17)

The error rate of this hyperplane for each class is bounded us-

ing the inequalities in equation (16) with k = |φ
−
−φ+|

var++var
−

=
1

FSM(K,y) . Therefore, the total training error rate on both

classes is also bounded by:

1

1 + k2
=

FSM(K, y)2

1 + FSM(K, y)2
. (18)

3.4 Discussion

The measure can be interpreted as the ratio of within-class
variance to between-class variance. It indicates how well the
two classes are separated. It is advantageous over KTA be-
cause it takes into account the within-class variances at a finer
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Figure 2: Results on synthetic data with different β values.

scale, and relaxes the strict conditions of KTA by considering
relative positions of classes in the feature space. For the ex-
amples in Section 2, FSM values of the best cases are always
0, those of the worst cases are always ∞, and for the pop-
ular case, there are no bounds. This measure also has some
similarities with other works.

The minimax probability machine (MPM) [Lanckriet et al.,
2002] controls misclassification probability in the worst-case
setting. The worst-case misclassification probability is min-
imized using Semidefinite Programming. The worst case is
determined by making no assumption rather than the mean
and the covariance matrix of each class. MPM is similar to
our approach that our measure also shows the worst-case mis-
classification error. The difference is that MPM considers the
data variance in all directions (by using the covariance ma-
trix), while our measure takes only the variance in the direc-
tion between the class centers. That is the reason why our
measure is a lightweight version of MPM and can be calcu-
lated efficiently. A special case of MPM is when the direction
between class centers contains eigenvectors of both covari-
ance matrices; the objective function that MPM optimizes is
equivalent to our measure.

In the context of nearest neighbor classification, one of the
criteria of learning a good distance function is to transform
data such that examples from the same class are collapsed into
one point [Globerson and Roweis, 2006]. Our measure also
shows quantitatively how much a class collapses. However,
the key difference is that in their method, the objective is the
whole class collapses to one point, while our measure shows
how the whole class collapses to a hyperplane. This differ-
ence explains why their method is applied to nearest neighbor
classification, while our measure is for kernel methods.

4 Experiments

As the purpose of these measures is to predict efficiently how
good a kernel matrix is for a given task using kernel methods,
we compare the measures to the de facto standard of cross
validation error rates of SVMs. We mimicked the model se-
lection process by choosing different kernels. We monitored

IJCAI-07
990



Lin. Poly RBF Tanh
0

0.2

0.4

0.6

0.8

1
australian

Lin. Poly RBF Tanh
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
breast−cancer

Lin. Poly RBF Tanh
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
diabetes

Lin. Poly RBF Tanh
0

0.2

0.4

0.6

0.8

1
fourclass

Lin. Poly RBF Tanh
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
german

Lin. Poly RBF Tanh
0

0.2

0.4

0.6

0.8

1
heart

Lin. Poly RBF Tanh
0

0.2

0.4

0.6

0.8

1
ionosphere

Lin. Poly RBF Tanh
0

0.2

0.4

0.6

0.8

1
vehicle

1−KTA
FSMerr
error

Figure 3: Results on different UCI data sets.

the error rates (as baselines), KTA and FSM, to see if how
they reflect the baselines. We used 10-times 5-fold stratified
cross validations to estimate the error rates.

To facilitate visual inspection of the results, we instead
showed the following quantities: (a) 1−KTA, (b) FSMerr,
defined as error bound based on FSM measure in formula
(15), and (c) error, cross validation error rates. The reason
is that all of these quantities range from 0 to 1 and relate to
the expected error rates of the kernel function in some sense.
The smaller their values, the better the kernel. The first two
quantities are expected to be correlated to the third one.

4.1 Synthetic Data

We generated synthetic data in R2, and used linear kernels to
simulate different data distributions by different kernels in a
feature space. For each data set parameterized by an angle
β, we used two Gaussian distributions (fixed variance in all
directions) for two classes centered at φ+ = (1, 0) ∈ R2

for class +1 and at φ− = (cos(β), sin(β)) ∈ R2 for
class −1. Each class contains 500 training examples. The
variances of the Gaussian distributions are determined to be
var+ = var− = 1

2 ‖ φ−−φ+ ‖. This ensures that for any β,
any data set can be images of another after a linear operation.
Therefore, these data sets with linear kernels are equivalent to
one data set with different kernel functions. For any β < 1,
the problems should have the same level of error rates (or
other measures) when using linear kernels, i.e. linear kernels
should be evaluated at the same level of goodness. We run
experiments with different β values of 30, 60, 90, 120, 150
and 180 (degrees) in turn. The results of 1-KTA, FSMerr
and error are shown in Figure 2.

From Figure 2, we can observe that error is stable across

different β, as we expected. FSMerr is also rather stable,
varying similarly to error. 1-KTA changes dramatically from
0.936 down to 0.395. It can be concluded that KTA is too
sensitive to absolute positions of data in the feature space.
This confirms our claim about the limitations of KTA, and
shows that our measure is more robust.

4.2 Real Data

We showed the advantage of our proposed measure over KTA
in real situations by selecting several popular data sets from
the UCI collection for experiments. Data names and experi-
mental results are displayed in Figure 3. Data was normalized
to [−1, 1]. Classes were grouped to make binary classification
problems. We chose four types of kernel for model selection:
linear kernels, polynomial kernels (degree 3 with scale 1),
RBF (Gaussian) kernels (default), and tan-hyperbolic kernels
(default)2. As described above, we ran cross validations and
displayed the results of different kernels.

The following conclusions can be observed from the
graphs:

• RBF kernels give the (approximately) lowest cross vali-
dation error rates in 7 out of 8 data sets. This shows that
RBF kernels are usually a good choice. However, KTA
makes RBF kernels the worst one as values of 1-KTA
are the highest ones in 7 out of 8 cases. Our measure
agrees with the error rates in most cases, making it more
reliable than KTA is.

• Similarly, Tanh kernels perform worst in most cases,
while KTA values are among the best ones.

2Default parameter values are set by LIBSVM environment at
http://www.csie.ntu.edu.tw/˜ cjlin/libsvm/
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• In case of very low error rates as in breast-cancer data
set, FSMerr is highly correlated to error rates, but KTA
is not.

We ranked the kernels according to error, KTA and FSM
separately from 1 to 4. We collected the rank of the best ker-
nel (according to error) for each dataset. On average, KTA
ranks the best kernel at 2.63 (±1.061) while FSM ranks it
at 1.63 (±0.518). A student t-test (with 95% level of confi-
dence) shows that FSM ranks the best kernel closer to 1 than
KTA. This also confirms the advantage of FSM.

In summary, we used synthetic and real data sets and com-
pared measures against the de facto standard of cross valida-
tion error rates. We showed that our measure correlates more
closely to the error rates than KTA does. When ranking the
best kernel according to the error rates, FSM shows a signifi-
cantly lower rank, on average. This suggests that our measure
is more reliable. This confirms our analysis of the limitations
of KTA and that our measure can overcome themse limita-
tions. It was also observed that there is still a gap between
kernel matrix evaluation measures and error rates, as error
rates are collected from many training rounds while measures
are calculated with one pass through the kernel matrices. This
is the trade off necessary for efficiency.

5 Conclusion

The paper shows that KTA, an efficient kernel matrix mea-
sure, which is popular in many contexts, has fundamental
limitations, as it is only a sufficient, not a necessary con-
dition to evaluate the goodness of a kernel matrix. A new
measure is proposed to overcome those limitations by using
data distributions in the feature space. This new measure fol-
lows the conventional wisdom of measuring within-class and
between-class variances in an appropriate way. The measure
provides the same efficiency as KTA, as evaluated in O(n2)
time complexity, and other properties. It also has links with
other methods. This measure is more correlated to the error
rates of SVMs than KTA is.

The implication of this work is vast. One can take into ac-
count finer data distribution models in the feature space, to
improve the current work. Also, there are a large number of
applications of this measure for other methods. We can di-
rectly apply this measure (similarly to KTA) to many feature
and model selection problems, such as boosting kernel matri-
ces, multiple kernel learning, feature selection and so on. In
general, with efficient kernel evaluation, we can leverage the
work of kernel matrix and kernel function learning, which is
of central interest in kernel methods.
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