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Abstract
Multi-view multi-task learning has recently at-
tracted more and more attentions due to its dual-
heterogeneity, i.e., each task has hetergeneous fea-
tures from multiple views, and probably correlates
with other tasks via common views. Existing meth-
ods usually suffer from three problems: 1) lack
the ability to eliminate noisy features, 2) hold a
strict assumption on view consistency and 3) ig-
nore the possible existence of task-view outliers.
To overcome these limitations, we propose a ro-
bust method with joint group-sparsity by decom-
posing feature parameters into a sum of two com-
ponents, in which one saves relevant features (for
Problem 1) and flexible view consistency (for Prob-
lem 2), while the other detects task-view outliers
(for Problem 3). With a global convergence prop-
erty, we develop a fast algorithm to solve the opti-
mization problem in a linear time complexity w.r.t.
the number of features and labeled samples. Ex-
tensive experiments on various synthetic and real-
world datasets demonstrate its effectiveness.

1 Introduction
In recent years, many real-world applications, such as web
page classification, bioinformatics analysis, semantic im-
age annotation and product recommendation, usually exhibit
dual-heterogeneity [He and Lawrence, 2011], i.e., each task
has heterogeneous features from multiple views (feature het-
erogeneity), and multiple tasks are probably correlated via
one or more common views (task heterogeneity). For exam-
ple, in web page classification, each web page has at least
two views: text and images, and multiple labels, such as poli-
tics, science and sports. In image annotation, each image has
features extracted from multiple sources, such as color his-
togram, edge direction and wavelet texture, and is probably
annotated with multiple objects, like cat, dog, lion, etc.

In order to handle these heterogeneous datasets, Multi-
View Learning (MVL) and Multi-Task Learning (MTL) were
proposed for feature heterogeneity and task heterogeneity, re-
spectively. In order to improve the performance of a baseline
learner, MVL aims to combine the information from multi-
ple feature views, while MTL is proposed to learn multiple
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Figure 1: Illustration of the framework of AGILE. Its weight matrix
Θ is decomposed into two components, W and H, where W saves
task relationship and view consistency with row-sparsity, while H
captures task outliers and inconsistent views with group-sparsity. In
prediction, the output of each task is calculated by a linear model.

correlated tasks together. Experimental results in a variety
of applications have shown the superiority of their perfor-
mance against baseline learners. However no MVL method
have considered heterogeneity of MTL and vice versa, limit-
ing their application on the datasets with dual-heterogeneity.

To overcome the limitation of MVL and MTL, recently
Multi-View Multi-Task Learning (MVMTL) has been pro-
posed by considering both view consistency and task rela-
tionship [He and Lawrence, 2011]. Compared with MVL
and MTL methods, it achieved much success on various real-
world problems with dual-heterogeneity [Zhang and Huan,
2012; Jin et al., 2013; Lu et al., 2017]. However, there are still
three challenges in MVMTL. 1) Feature learning should be
applied in the learning phase. Multi-view multi-task datasets
usually emerge in high-dimensionality, where only a subset
of features, i.e, discriminative features, are useful, and the
noisy features might reduce the prediction performance. 2)
Modeling flexible view consistency is recently demanded, as
it is possible that different views provide complementary in-
formation, rather than strictly consistent with each other. One
simple example is web page classification, where the visual
content is complementary to the text content. 3) The exis-
tence of task outliers and inconsistent views should be con-
sidered. For example, each of texts and images has unique
information in web page classification.



To cope with the aforementioned challenges, we propose
a fAst and robust method with Group sparsIty for multi-
view multi-task LEarning (AGILE), to capture a more flex-
ible relationship among both tasks and views, and mean-
while discard useless features and views. To handle the dual-
heterogeneity in a robust manner, the weight matrix Θ of AG-
ILE is decomposed into a sum of two group-sparse compo-
nents: W and H. Specifically, for Challenges 1 and 2, W
saves task relationship with selected task-common features
by `2,1-norm-based regularization, and models flexible view
consistency by regularizing a new norm we call group trace
lasso. For Challenge 3, H simultaneously captures task out-
liers and inconsistent views by penalizing a group lasso reg-
ularization. We illustrate the framework of AGILE in Fig. 1.
To optimize the convex objective function of AGILE, we pro-
pose a fast optimization algorithm with global convergence,
which has a linear time complexity w.r.t. the number of fea-
tures and labeled samples. Empirical results on synthetic and
real-world datasets demonstrate the superior performance of
AGILE, compared with cutting-edge methods. The contribu-
tions of this work can be summarized into three-folds.

• We propose a robust MVMTL method, enabling to cope
with dual-heterogeneity, select relevant common fea-
tures, and capture task outliers and inconsistent views.

• To promote flexible view consistency, we propose the
group trace lasso norm, which is regarded as a general-
ization of trace lasso [Grave et al., 2011].

• We develop a fast optimization algorithm to solve the
convex objective function, and show that it has a linear
time complexity in problem size.

2 Related works
To address the problems with dual-heterogeneity, IteM2 [He
and Lawrence, 2011] was first proposed for MVMTL. IteM2

constructs a bi-partite graph for each view, and projects
any two tasks to a new reproducing kernel Hilbert space
based on their common views. However, it is a transduc-
tive method, which is designed only for problems with non-
negative features, and unable to generate predictive mod-
els for future testing samples. To overcome these limita-
tions, inductive learning methods [Zhang and Huan, 2012;
Jin et al., 2013] were later developed based on linear models
and co-regularization [Sindhwani et al., 2005]. In [Zhang and
Huan, 2012], regMVMT was proposed by minimizing the
difference of predictive models for distinct tasks on the same
view. A more general method, CSL-MVMT [Jin et al., 2013]
was developed by assuming that a low-dimensional subspace
is shared among related tasks with common views. But the
two methods hold a strong assumption on view consistency,
i.e., predictive models from different views should be consis-
tent with each other on the unlabeled data, which probably vi-
olates the problem setting of various real-world problems. In-
spired by linear discriminant analysis, MAMUDA [Jin et al.,
2014] was proposed as a supervised feature extraction method
to handle dual-heterogeneity via shared latent spaces among
multiple views. Based on multilinear factorization machines,
MFM was recently proposed in [Lu et al., 2017] by learning

both task-specific feature map and task-view shared multilin-
ear structures. However, MFM is unable to directly capture
inconsistent views and utilize a possible large amount of un-
labeled data. In [Zhou et al., 2018], MTMVL is treated as a
multi-objective optimization problem by integrating relation-
ships among tasks, views and samples.

Existing MVMTL methods typically build the models on
original features, however, irrelevant features would nega-
tively influence the prediction performance. Besides, they
usually assume that predictive models from multiple views
are consistent, and multiple tasks are correlated, which prob-
ably contradicts real-world applications.

3 The AGILE method
3.1 Preliminary
For MVMTL, suppose that we have T tasks, and each task has
V views. For the t-th task, let Xt = [X1

t , ...,X
V
t ] ∈ Rnt×d

and Ut ∈ Rmt×d be the labeled and unlabeled data matrices,
respectively, where Xv

t ∈ Rnt×dv is the v-th view data in
the t-th task, ∀t, v. Each data matrix Xt is associated with
a target vector yt ∈ Rnt , ∀t. Without loss of generality, for
an arbitrary matrix A, ‖A‖F and ‖A‖∗ denote its Frobenius
norm and trace norm, respectively. Additionally, we define
`2,1-norm by ‖A‖2,1 =

∑p
i=1 ‖ai·‖2, where ‖ai·‖2 is the

`2-norm of the i-th row ai· of A.
For the t-th task of a MVMTL problem, we consider a lin-

ear predictive function defined by

yt ≈
1

V

V∑
v=1

Xv
t θ

v
t =

1

V
Xtθ

>
t , (1)

where θt = [θ1
t ; ...;θ

V
t ] ∈ Rd with θvt ∈ Rdv denoting the

weight vector for the v-th view of the t-th task, ∀t, v. Eq. (1)
actually averages the prediction results from all the V views
in the t-th task, ∀t. For simplicity, we omit the intercept in
the linear model by assuming that samples and targets have
been centered in column-wise.

3.2 Formulation
For robust MVMTL, we decompose the weight matrix Θ =
[θ1, ...,θT ] ∈ Rd×T into two components W and H. It al-
lows to model correlations among tasks and views by W,
and capture tasks/views that are specific to some views/tasks
by H, which cannot be fit into W. Thus, based on (1) and
empirical risk minimization with squared `2-norm loss, the
optimization problem of AGILE is

min
Θ=W+H

T∑
t=1

1

2

∥∥∥∥yt − 1

V
Xtθt

∥∥∥∥2
2

+R(W) +R(H), (2)

where R(W) and R(H) denote the regularization terms on
W = [w1, ...,wT ] and H = [h1, ...,hT ], respectively.
R(W) aims to cope with dual-heterogeneity, while R(H) is
designed to detect task outliers and inconsistent views.

For dual-heterogeneity, we decompose R(W) into a sum
of two parts, so as to capture both task relationship and view
consistency. In terms of task relationship, we consider that
multiple tasks are correlated based on an identical feature



subset, i.e., task-common features. In this respect, the `2,1-
norm [Liu et al., 2009] is imposed on W to promote its row-
sparsity (feature-wise group sparsity). Since the `2,1-norm
regularizer ‖W‖2,1 encourages sparsity among features and
non-sparsity among tasks, discriminative task-common fea-
tures will be assigned larger values. In this way, irrelevant
features are removed by relying on the complementary infor-
mation from multiple views, and task relationship is modeled
via the non-zero rows (common features) of W.

In terms of view consistency, the independence assump-
tion [Belkin et al., 2006] of multiple views has been widely
adopted by MVL methods [Blum and Mitchell, 1998; Sind-
hwani et al., 2005], indicating that predictive models from
multiple views can achieve mutual agreement on the unla-
beled data. On some practical applications, however, it is
possible that a few views become useless for certain tasks
due to noise pollution, and the assumption is violated. To
address this challenge, for the t-th task, we impose a novel
group trace lasso norm ‖UtWt‖∗, in which Wt is a special
diagonal matrix whose diagonal elements are vectors {wv

t }v ,

Wt =

w1
t

. . .
wV
t

 ∈ Rd×V , (3)

with wv
t ∈ Rdv denoting the v-th view weight vector of wt.

In group trace lasso, UtWt is a matrix containing the pre-
dictions from multiple views (each in a column) on the un-
labeled data Ut. Hence, its low-rankness imposes the rela-
tionships among views in the multi-view setting. If predictive
models are restrictively consistent among multiple views, the
rank of UtWt equals to 1. In addition, as shown in Sec. 3.3,
the regularizer promotes group-sparsity among views, so that
consistent views will get larger values while useless views are
discarded by W. Therefore, we formulate R(W) by

R(W) := α ‖W‖2,1 + β

T∑
t=1

‖UtWt‖∗ , (4)

where α and β are positive hyperparameters. In this way,
W models task relationship via common features, promotes
flexible view consistency and discards useless views.

For robustness, we expect to capture both task outliers, that
have specific supporting features, and inconsistent views, that
are inconsistent to other views but provide complementary in-
formation. Thus, a group-sparsity inducing regularizer R(H)
is imposed on H by treating each task-view pair as a group.
Specifically, for the v-th view, view-specific task outliers are
captured by regularizing

∑T
t=1 ‖hvt ‖2, where hvt ∈ Rdv de-

notes the weight vector of the v-th view of ht. Similarly, for
the t-th task, task-specific inconsistent views are detected by
regularizing

∑V
v=1 ‖hvt ‖2. By summing over V views and T

tasks on these two terms, we have

R(H) := γ

T∑
t=1

V∑
v=1

‖hvt ‖2 = γ ‖H‖G1
, (5)

where ‖·‖G1
denotes the Group `1-norm of groups {hvt }t,v ,

and γ is a positive hyperparameter. Once the t-th task is a

outlier in the v-th view, or the v-th view is inconsistent in
the t-th task, corresponding hvt would take arbitrary values,
otherwise zero.

Based on (2), (4) and (5), we now have the optimization
problem for the proposed AGILE method:

min
Θ=W+H

1

2
‖y −Xθ‖22+α ‖W‖2,1+β ‖UW‖∗+γ ‖H‖G1

,

(6)
where X ∈ R

∑
t nt×dT , U ∈ R

∑
tmt×dT andW ∈ RdT×V T

are block diagonal matrices with the t-th blocks being 1
V Xt,

Ut and Wt, respectively, and y = [y1; ...;yT ] ∈ R
∑

t nt .
In (6), θ ∈ RdT denotes a vectorization of the weight matrix
Θ. Note that, the equation

∑T
t=1 ‖UtWt‖∗ = ‖UW‖∗ holds

based on Lemma 2.3 in [Recht et al., 2010].

3.3 Remarks on group trace lasso
To model view consistency, some MVMTL methods [Zhang
and Huan, 2012; Jin et al., 2013] adopt co-regularization
[Sindhwani et al., 2005]. In contrast, AGILE applies a novel
regularizer ‖UW‖∗ in (6) for saving flexible consistency.
Following lemmas1 present its important properties.
Lemma 1. For the t-th task, if predictions from multiple
views are consistent, the following inequality holds,

‖UtWt‖∗ = ‖Utwt‖2 ≤ ‖Ut‖op ‖wt‖2 , (7)

where ‖·‖op denotes operator norm. If prediction from multi-
ple views are orthogonal, the following inequality holds,

‖UtWt‖∗ = ‖Utwt‖G1
≤

V∑
v=1

‖Uv
t ‖op ‖w

v
t ‖2 , (8)

where ‖Utwt‖G1
=
∑V
v=1 ‖Uv

tw
v
t ‖2 is Group `1-norm.

Lemma 2. For the t-th task, the following inequality holds,

‖Utwt‖2 ≤ ‖UtWt‖∗ ≤ ‖Utwt‖G1
. (9)

Lemmas 1 and 2 tell us if predictions from two views are
strongly consistent, the proposed norm behaves like `2-norm
on these two predictive models; if predictions from two views
are orthogonal, the norm equals to the group `1 norm, impos-
ing group sparsity on {wv

t }Vv=1. Thus, it enables to equally
penalize the two consistent views, and discard the useless in-
consistent views. In this sense, this method lies in between
the usual strict assumption of “all views contain ‘exactly’ the
same information” and feature concatenation, which imposes
no relationship among the weights.

Note that the proposed norm is similar with the trace lasso
[Grave et al., 2011], since both impose a trace norm regu-
larizer on the product of a data matrix and a diagonal matrix
of model parameters. The difference exists in the diagonal
matrix, where each diagonal element is a parameter in trace
lasso, and a group (view) of parameters in the proposed norm.
In other words, the proposed norm can be regarded as group
trace lasso, as trace lasso is its special case once the number
of parameters in each group is restricted to be one.

1The proofs are provided in supplementary materials: https:
//www.dropbox.com/s/5koj44hmx4qb504/AGILE sup.pdf?dl=0.

https://www.dropbox.com/s/5koj44hmx4qb504/AGILE_sup.pdf?dl=0.
https://www.dropbox.com/s/5koj44hmx4qb504/AGILE_sup.pdf?dl=0.


4 Optimization algorithm
Since the objective function (6) is jointly convex w.r.t. W
and H, the global optimum is obtained by alternatively up-
dating W and H. The trace norm in (6) is non-smooth and
involves the product of U andW , thus it is impossible to di-
rectly employ the proximal gradient method. To circumvent
this difficulty, we apply ADMM [Boyd et al., 2011] to op-
timize (6) by introducing an auxiliary variable P = UW ,
leading to the augmented Lagrangian defined as follows,

L(Θ,P,Q) =
1

2
‖y −Xθ‖22 + α ‖W‖2,1 + β ‖P‖∗

+
1

2
‖UW −P + Q‖2F + γ ‖H‖G1

, (10)

where Q is the scaled dual variable. The algorithm on solving
(10) repeats the following three steps until convergence:

(a) Θ∗ ← minΘ
1
2 ‖y −Xθ‖22 + 1

2 ‖UW −P + Q‖2F +
α ‖W‖2,1 + γ ‖H‖G1

,

(b) P∗ ← minP
1
2 ‖UW −P + Q‖2F + β ‖P‖∗,

(c) Q∗ ← Q + UW −P.
For Problem (a), we propose to solve it by proximal

method [Nesterov, 2013], which decomposes its objective
into two components, smooth f(Θ) and non-smooth g(Θ):

f(Θ) =
1

2
‖y −X(w + h)‖22 +

1

2
‖UW −P + Q‖22 ,

g(Θ) = α ‖W‖2,1 + γ ‖H‖G1
. (11)

In the k-th iteration, the optimal solution can be calculated by
the follow two proximal operators:

min
W

1

2η
‖W−(Wk − η∇wf(Θk) )‖22 + α ‖W‖2,1 , (12)

min
H

1

2η
‖H−(Hk − η∇hf(Θk) )‖22 + γ ‖H‖G1

, (13)

where∇wf and∇hf denote the derivatives of f(Θ) w.r.t W
and H, respectively, and η is a step size, which satisfies

f(Θk+1) ≤ f(Θk) + 〈∇wf(Θk),Wk+1 −Wk〉

+ 〈∇hf(Θk),Hk+1 −Hk〉+ 1

2η

∥∥Θk+1 −Θk
∥∥2
2
. (14)

The optimization problems (12) and (13) can be analyti-
cally solved by applying soft thresholding operations as sum-
marized in [Liu et al., 2009] and Lemma 3, respectively.
Lemma 3. If H∗ is the optimal solution of the optimization
problem (12), its t-th column h∗t is given by the proximal op-
erator, Sηγ(rt) = [Sηγ(r

1
t ); ...;Sηγ(r

V
t )], where

Sηγ(r
v
t ) =

{
rvt

(
1− ηγ

‖rvt ‖2

)
‖rvt ‖2 > ηγ

0 0 ≤ ‖rvt ‖2 ≤ ηγ,
(15)

and rt denotes the t-th column of Hk − η∇hf(Θk).
For Problem (b), it admits a closed-form solution by ap-

plying a matrix soft thresholding operation [Cai et al., 2010].
It is worth noting that, based on Lemma 2.3 in [Recht et al.,
2010] and the fact that UW is a diagonal block matrix, Prob-
lem (b) can be decoupled for T tasks and solved efficiently.

Table 1: The statistics of used four real-world dual-heterogeneous
datasets. Here V , T and d denote the number of views, tasks and
features, respectively, and np and nn are the number of positive and
negative samples in each task, respectively.

Dataset V T d np nn Domain

FOX 2 4 3,458 178∼635 888∼1,345 Text categorization
Mirflickr 2 8 193 668∼7,849 3,413∼10,594 Image annotation
NUS-Object 5 7 634 964∼2,370 8,000∼9,406 Image annotation
NUS-Scene 5 15 629 1,039∼11,995 4,409∼15,365 Image annotation

4.1 Analysis on time complexity
In practice, we apply fast-ADMM [Goldstein et al., 2014]
and accelerated proximal method [Nesterov, 2013] to accel-
erate the optimization algorithm2, leading to an optimal con-
vergence rate ofO( 1

k2 ) with k being the number of iterations.
In time complexity, for updating Θ, gradient calculation

(∇wf and ∇hf ) and soft thresholding have time complex-
ities of O(d

∑
t(nt + V mt)) and O(dT ), respectively. On

updating P, matrix soft thresholding needs to conduct SVD
on UW , leading to a time complexity of O(V

∑
tm

2
t ), pro-

vided that V � mt, ∀t. Therefore, the total time complexity
of each iteration isO(d(

∑
t nt+ T ) + V

∑
tm

2
t ), in a linear

complexity w.r.t. the number of features and labeled samples.

5 Experiments
5.1 Experimental setting
Synthetic data
For the generation of synthetic datasets, the number of tasks
and views are set as T = 12 and V = 6, respectively, and
each task has n = 150 labeled and m = 150 unlabeled data.
The dimensionality dv of each view is selected from 30 to
60 by step 6, with d =

∑
v dv = 300. The data matrix

X1 ∈ Rn×d1 and the weight matrix W1 ∈ Rd1×T from
the 1-st view are randomly sampled from normal distribu-
tions N (0, 25) and N (0, 16), respectively. In W1, top 30%
of the features are treated as useful features by setting 70%
of rows to 0. To keep view consistency, Xv ∈ Rdv×T and
Wv ∈ Rdv×T (v > 1) are generated by Xv = X1Pv> and
Wv = PvW1, respectively, with constraints Pv>Pv = Id1
and Pv ∈ Rdv×d1 , whose columns are left-singular vec-
tors of a matrix randomly sampled from uniform distribution
U(0, 1). Another weight matrix H ∈ Rd×T is randomly sam-
pled from N (0, 16), where a certain set of {hvt }t,v is treated
as outliers by assigning 0 to the rest. Finally, the target yt is
calculated by yt =

1
V Xt(wt + ht) + δt, with δt ∼ N (0, 1)

being stochastic noise.

Real-world data
We conduct experiments on four real-world heterogeneous
datasets: FOX, Mirflickr, NUS-Scene and NUS-Object. The
FOX dataset is extracted from FOX web news [Qian and
Zhai, 2014], while Mirflickr, NUS-Scene and NUS-Object
refer to image annotation problem [Huiskes and Lew, 2008;
Chua et al., 2009]. The statistics are summarized in Table 1,
and more details are presented in supplementary materials.

2The procedure of the algorithm is provided in the supplement.



Comparing methods
We compare AGILE3 with six cutting-edge methods: Elastic-
Net [Zou and Hastie, 2005], rMTFL [Gong et al., 2012],
coMVL [Sindhwani et al., 2005], IteM2 [He and Lawrence,
2011], CSL-MVMT [Jin et al., 2013] and MFM [Lu et al.,
2017]. As a generalization of ridge regression [Hoerl and
Kennard, 1970] and lasso [Tibshirani, 1996], Elastic-Net is
selected as a baseline method, while rMTFL and coMVL are
selected as representative MTL and MVL methods, respec-
tively. As state-of-the-art MVMTL methods, IteM2, CSL-
MVMT and MFM4 are introduced in comparison, and the
codes are provided by corresponding authors.

Configuration
For evaluation, in each task, we randomly select a%, a%,
20% and 20% of total samples as labeled training set, unla-
beled training set, validation set and testing set, respectively,
and a is selected from {10, 20, 30}. We repeat this process
five times, and report average results with standard deviation.
In parameter setting, the weight balancing `1 and `2 regular-
izers in Elastic-Net is selected from {0.2, 0.4, 0.6, 0.8, 1}. As
recommended in original papers, the dimensionality of latent
space in CSL-MVMT and MFM is set as 20. Values for other
parameters are selected from {10a

∣∣ |a| ∈ [3]}. For each iter-
ative algorithm, we terminate it once the relative change of its
objective is below 10−5, and set the maximum number of it-
erations as 500. The performances of comparing methods are
evaluated by Area Under ROC-Curve (AUC) and Accuracy.

5.2 Experiments on synthetic data
Illustration of weight matrix decomposition
Weight matrix decomposition of AGILE on one designed
synthetic dataset is illustrated in Fig 2, where Θ∗ = W∗+H∗

denotes the design truth model, and Θ = W + H is learned
by AGILE with the setting α = 10, β = 1 and γ = 36.
As shown in Fig. 2, AGILE successfully recovers the group-
sparse pattern in Θ∗ by assigning group-sparsity to W and
H. To validate group trace lasso, for each task we select one
view as the useless view by assigning noise and 0 to corre-
sponding Xv

t and wv
t , respectively, producing a feature-wise

and view-wise group-sparse W∗ in Fig. 2(a). As shown in
Fig. 2(b), W detects not only noise features (row-sparsity)
but also useless views (group-sparsity).

Comparison of MVMTL methods
Next, we analyze the robustness of AGILE. In this experi-
ment, we generate nine synthetic datasets by changing the
percentage of task-view outliers in H from 10% to 90% by
step 10%. Fig. 3 shows the comparison results of AGILE and
three MVMTL methods in AUC and Accuracy, where AGILE
consistently achieves superior performance.

To evaluate MVMTL methods in running time, we gen-
erate two sets of synthetic datasets by varying the number
of training samples and features from 100 to 1000 by step
100, respectively. Fig. 4 shows results of AGILE and three

3We provide the MATLAB code of AGILE at: https://www.
dropbox.com/s/f6pvpy6umagwa1b/AGILE.zip?dl=0

4MFM-F-S in [Lu et al., 2017] is used here for its best perfor-
mance among the variants of MFM.

(a) Designed model Θ∗ (b) Learned model Θ

Figure 2: Illustration of weight matrix decomposition of AGILE on
the synthetic dataset. Left: designed model Θ∗ = W∗ + H∗;
Right: learned model Θ = W+H by AGILE. White (black) color
indicates non-zero (zero) values in magnitude.

Figure 3: Robustness analysis of AGILE and three MVMTL meth-
ods on nine synthetic datasets, which are generated by varying the
percentage of task-view outliers from 10% to 90% by step 10%.

MVMTL methods in running time on the two sets of datasets.
AGILE and IteM2 consume the least running time as increas-
ing the data size. In contrast, the running time of MFM and
CSL-MVMT significantly increase as the number of training
samples and features increases, respectively.

5.3 Experiments on real-world data
Evaluation of comparing methods
To evaluate the performances of comparing methods, an ex-
periment on four real-world heterogeneous datasets is con-
ducted. The ratio n/N of labeled training samples is se-
lected from the set {10%, 20%, 30%}. Experimental results
are reported in Table 2, where the best performance is high-
lighted in boldface. In Table 2, as n/N increases, the per-
formances of comparing methods increase. AGILE obtains
the best performance in 75% of total cases. This performance
superiority probably comes from AGILE’s ability on captur-
ing task-view outliers and removing useless features. An-
other MVMTL method, CSL-MVMT, performs the second
best among MVMTL methods, and competes with compar-
ing methods except AGILE and rMTFL, indicating the impor-
tance on modeling dual-heterogeneity in real-world datasets.
By handling only task-heterogeneity, rMTFL performs better
or comparable compared with the baseline Elastic-Net, es-
pecially on FOX, indicating that there probably is a strong
task-heterogeneity in the dataset. IteM2 performs worst on
the used datasets, and one possible explanation is that it is
originally designed for problems with non-negative features.

https://www.dropbox.com/s/f6pvpy6umagwa1b/AGILE.zip?dl=0
https://www.dropbox.com/s/f6pvpy6umagwa1b/AGILE.zip?dl=0


Table 2: Experimental results on real-world datasets by selecting the percentage n/N of labeled data from {10%, 20%, 30%}.

AUC Accuracy
Dataset n/N Elastic-Net rMTFL coMVL IteM2 CSL-MVMT MFM AGILE Elastic-Net rMTFL coMVL IteM2 CSL-MVMT MFM AGILE

FOX
10% .967±.002 .976±.001 .965±.002 .814±.004 .972±.005 .923±.012 .985±.002 .874±.004 .946±.001 .825±.003 .855±.002 .942±.002 .763±.020 .956±.002
20% .969±.002 .978±.001 .967±.003 .808±.009 .973±.003 .934±.011 .988±.002 .892±.003 .951±.001 .850±.004 .856±.006 .944±.002 .770±.019 .963±.003
30% .971±.001 .980±.002 .970±.001 .816±.006 .976±.003 .929±.010 .991±.001 .898±.003 .951±.003 .856±.003 .855±.002 .948±.004 .736±.013 .969±.001

Mirflickr
10% .573±.002 .621±.001 .618±.002 .519±.002 .633±.003 .618±.003 .645±.002 .731±.001 .759±.001 .759±.001 .704±.001 .754±.004 .766±.004 .728±.006
20% .579±.002 .630±.001 .629±.002 .518±.001 .633±.002 .615±.002 .635±.008 .741±.006 .761±.001 .761±.001 .705±.000 .755±.004 .767±.004 .717±.012
30% .655±.002 .630±.002 .629±.001 .510±.002 .636±.004 .620±.006 .640±.002 .796±.001 .763±.001 .764±.001 .701±.002 .757±.005 .770±.003 .710±.027

NUS-Object
10% .851±.003 .853±.005 .877±.001 .565±.004 .858±.001 .836±.002 .884±.001 .874±.002 .875±.003 .882±.001 .746±.001 .847±.003 .857±.001 .888±.000
20% .857±.001 .862±.004 .853±.002 .564±.003 .860±.001 .848±.001 .871±.006 .878±.001 .880±.001 .877±.001 .745±.000 .850±.002 .866±.002 .889±.002
30% .864±.003 .865±.002 .860±.002 .566±.003 .862±.002 .856±.003 .874±.003 .881±.001 .881±.000 .881±.001 .746±.001 .848±.001 .871±.001 .890±.001

NUS-Scene
10% .744±.010 .724±.006 .777±.001 .646±.002 .756±.001 .744±.005 .761±.005 .838±.003 .833±.002 .848±.000 .712±.001 .839±.003 .820±.003 .822±.006
20% .747±.001 .753±.003 .745±.001 .676±.009 .760±.007 .745±.001 .761±.010 .841±.001 .843±.000 .840±.000 .739±.006 .842±.007 .840±.006 .843±.009
30% .769±.001 .770±.001 .767±.001 .696±.012 .769±.003 .767±.005 .772±.007 .842±.001 .844±.002 .843±.001 .743±.007 .844±.005 .844±.008 .845±.005

Figure 4: Comparison of methods in running time on two sets of
synthetic datasets, which are generated by varying the numbers of
training samples (Left) and features (Right) from 100 to 1000.

Figure 5: Analysis on the effect of regularizers in AGILE on NUS-
Object. AGILEα=0, AGILEβ=0 and AGILEγ=0 denote three vari-
ants of AGILE by setting α = 0, β = 0 and γ = 0, respectively.

Analysis on the effect of regularizations
To evaluate the effect of regularizations used in AGILE, an
experiment is performed by assigning 0 to each of three pa-
rameters, respectively, and evaluation results on NUS-Object
are shown in Fig. 5. As shown in Fig. 5, setting γ = 0 re-
sults in the largest performance loss in four out of six cases,
demonstrating the importance of capturing task-view outliers
on improving performance. Although setting β = 0 gives the
least performance loss in half of cases, there is still a signifi-
cant loss compared with the original AGILE.

Hyperparameter sensitivity analysis
The sensitivity of AGILE in three regularization parame-
ters α, β and γ is investigated on NUS-Object. Specifi-
cally, α controls the row-sparsity of W, β measures the de-
gree of view consistency and γ controls the group-sparsity
of H. Values of the parameters are selected from the set

Figure 6: Sensitivity analysis of α, β and γ in AUC on NUS-Object.
Parameter values are shown in the logarithmic scale.

{10a
∣∣ |a| ∈ [4]}. Fig. 6 shows the experimental results

in AUC with n/N = 30%. The subfigure on α and β is
shown by fixing γ = 1, and the similar setting is used for the
other two subfigures. As shown in Fig. 6, AGILE achieves
its best performance on NUS-Object with α ≤ 101, β = 100

and 101 ≤ γ ≤ 102. Generally, it is recommended to assign
smaller values to α and β, and a relatively larger value to γ.

6 Conclusion
In this paper, we propose a fast and robust MVMTL method,
AGILE, by decomposing the weight matrix into two compo-
nents, and adopting a joint regularization to promote group-
sparsity. To select relevant features and model flexible view
consistency, joint group-sparsity is imposed on the first com-
ponent by `2,1-norm and group trace lasso. To detect task
outliers and inconsistent views, the second component is
regularized by group `1-norm to encourage its group spar-
sity. Thanks to the convexity of the objective function, a
fast iterative algorithm is developed to solve it with global
convergence. Experiments on both synthetic and real-world
datasets demonstrate its effectiveness. It shows that in real
MVMTL setting, data exhibit all the problems, like existence
of noisy features, useless views and task-view outliers, and
our method is flexible enough to handle it.
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