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Abstract
Multi-view multi-task learning refers to dealing
with dual-heterogeneous data, where each sample
has multi-view features, and multiple tasks are cor-
related via common views. Existing methods do
not sufficiently address three key challenges: (a)
saving task correlation efficiently, (b) building a
sparse model and (c) learning view-wise weights.
In this paper, we propose a new method to di-
rectly handle these challenges based on multiplica-
tive sparse feature decomposition. For (a), the
weight matrix is decomposed into two components
via low-rank constraint matrix factorization, which
saves task correlation by learning a reduced num-
ber of model parameters. For (b) and (c), the first
component is further decomposed into two sub-
components, to select topic-specific features and
learn view-wise importance, respectively. Theoret-
ical analysis reveals its equivalence with a general
form of joint regularization, and motivates us to de-
velop a fast optimization algorithm in a linear com-
plexity w.r.t. the data size. Extensive experiments
on both simulated and real-world datasets validate
its efficiency.

1 Introduction
Multi-View Multi-Task Learning (MVMTL) is an important
learning problem with a variety of interesting real-world ap-
plications, such as text categorization [He and Lawrence,
2011], bioinformatics analysis [Zhang and Huan, 2012], se-
mantic image annotation [Jin et al., 2013] and web page
classification [Lu et al., 2017]. The objective of MVMTL
is to improve the prediction of targets by relying on dual-
heterogeneity [He and Lawrence, 2011]. Dual-heterogeneity
comprises task-heterogeneity and feature-heterogeneity, in-
dicating that multiple tasks possibly related with each other
by the common views of samples, and each sample can have
various representations from different views. A representa-
tive example is classification of protein functions, in which
each protein is possibly associated with multiple functional
classes, including metabolism, transcription and cellular or-
ganization, and has distinct features from multiple views,
such as protein sequences and 3D structures.

The problems with single-heterogeneity have been exten-
sively studied in Multi-Task Learning (MTL) and Multi-View
Learning (MVL). The intuitive idea behind MTL/MVL is
that, learning performance for one single task/view can be im-
proved by leveraging samples from other related tasks/views.
MVL captures feature-heterogeneity by saving view consis-
tency in the way that predictive models from multiple views
achieve mutual agreement on the unlabeled data [Blum and
Mitchell, 1998; Hardoon et al., 2004]. In contrast, MTL saves
task-heterogeneity by modeling task correlation and learning
multiple correlated tasks together, based on joint regulariza-
tion [Liu et al., 2009b; Gong et al., 2012a] or feature decom-
position [Jalali et al., 2010; Han and Zhang, 2015].

Recent research has gradually shifted its emphasis from
the problems with single-heterogeneity to the ones with dual-
heterogeneity. Several MVMTL methods have recently been
proposed, based on joint regularization [Zhang and Huan,
2012], factorization machines [Lu et al., 2017], and multi-
objective optimization [Zhou et al., 2018]. Current MVMTL
methods usually suffer from three problems: (a) saving task
correlation in the way that models of each task-pair are sim-
ilar, which is too strong on many real problems, and results
in a relatively large number of model parameters to learn; (b)
building a learning model on original features, however, ir-
relevant features would harm the generalization ability, and
it is probable that a group of correlated tasks shares group-
specific features; (c) modeling strict view consistency, that
models from multiple views should be consistent, and assign-
ing a same weight to different views. But it can be expected
that multiple views provide supplementary information, and
different views contribute distinct importance to the model.

To address all the three problems, in this paper, we pro-
pose a novel method via multiplicative Sparse feature de-
comPosition for muLti-vIew multi-Task learning (SPLIT),
which decomposes the weight matrix Θ into three multiplica-
tive components A, B and H. Under an assumption that tasks
can be reconstructed by a small number of latent topics, Θ is
first decomposed as Θ = WH by low-rank constraint matrix
factorization, leading to a reduced number of effective param-
eters of Θ. To learn a topic-specific sparse model and a view-
weighting scheme, W is further decomposed as W = A ◦B
by Hadamard (element-wise) product, where A and B select
topic-specific relevant features and assign different weights
to distinct topic-view pairs, respectively. Fig. 1 illustrates the



Figure 1: Multiplicative feature decomposition used for generating
a simulated dataset with 4 views, 4 topics and 8 tasks. The weight
matrix Θ is decomposed by Θ = (A ◦ B)H. Components A and
B store topic-specific features and view-wise weights, respectively,
while W = A ◦B and H together model task correlation. Darker
blue (yellow) color indicates smaller (larger) values in magnitude.

multiplicative sparse feature decomposition. Our theoretical
analysis shows two things: 1) the family of methods is equiv-
alent to a joint regularization with a more general form of
regularizers, and 2) feature-sparse component A is directly
related to view-weighting component B, motivating us to de-
rive a fast optimization algorithm in a linear complexity w.r.t.
the data size. Promising empirical results on various datasets
demonstrate the efficiency of SPLIT for MVMTL. We high-
light the contributions of this paper as follows:

• We focus on the key missing points of current MVMTL
methods, i.e. feature selectivity and view weighting, and
develop a new method that allows us to efficiently se-
lect relevant features, and assign view-wise importance.
This was not realized by any method so far.

• Theoretical analysis reveals that the equivalence be-
tween a general family of the proposed framework and
the jointly regularized approach, leading to two novel
MVMTL formulations.

• An efficient optimization algorithm is developed to solve
the optimization problem in a linear time w.r.t. the data
size, which has not been realized by any method so far.

We begin by discussing related works in Section 2. Next,
we introduce the proposed SPLIT in Section 3. We provide
theoretical analysis of a family of SPLIT in Section 4, and
develop an efficient algorithm in Section 5. In Section 6, we
present experimental results on evaluation. Finally, we con-
clude this paper in Section 7.

2 Related works
For Multi-task learning, based on the assumption that task
relationship is shared through task-common features, regu-
larization with `p,q-norm (p > 1, q ≥ 1) is imposed on the
weight matrix to encourage group sparsity [Liu et al., 2009a;
Gong et al., 2012a]. To capture both task commonality and
specificity, feature decomposition approaches are proposed
via decomposing the weight matrix into multiple components

by summation [Chen et al., 2011; Gong et al., 2012b] or mul-
tiplication [Lozano and Swirszcz, 2012; Wang et al., 2016].

Multi-view learning aims to utilize features from differ-
ent views to improve the performance of a baseline learner.
Two types of methods, co-training [Blum and Mitchell, 1998;
Muslea et al., 2006; Sun and Jin, 2011] and co-regularization
[Sindhwani et al., 2005; Xie and Sun, 2015; Kan et al., 2016],
are proposed to make predictive models from multiple views
consistent on the unlabeled data.

For multi-view multi-task learning, IteM2 [He and
Lawrence, 2011] constructs a bi-partite graph for each view,
and projects any two tasks to a new reproducing kernel
Hilbert space based on their common views. As an induc-
tive learning method, CSL-MTMV [Jin et al., 2013] aims to
mine a low-dimensional subspace shared among related tasks
with common views. Based on multilinear factorization ma-
chines, MFM was recently proposed in [Lu et al., 2017] by
learning both task-specific feature map and task-view shared
multilinear structures. In [Li and Huan, 2018], asymmetric
bilinear factor analyzers with rank constraints are applied to
capture the interactions among tasks and views.

3 The proposed method
3.1 Preliminary
For a MVMTL problem with V views and T tasks, given the
data Xt = [X1

t , ...,X
V
t ] ∈ Rnt×d of t-th task, where Xv

t ∈
Rnt×dv denotes the v-th data with d =

∑
v dv , we introduce

a linear model to approximate the t-th target yt ∈ Rnt :

yt ≈
1

V

V∑
v=1

Xv
t θ

v
t =

1

V
Xtθt, ∀t. (1)

In (1), θt = [θ1
t ; ...;θ

V
t ] ∈ Rd is the parameter model of

the t-th task, with θvt ∈ Rdv being its sub-vector of the v-th
view. For T tasks, we have Θ = [θ1, ...,θT ] ∈ Rd×T . For
convenience, we omit the intercept in (1) by assuming that
the input data and target have been centered in column-wise.

3.2 Methodology
In order to model task correlation efficiently, we assume that
multiple tasks are correlated through a subspace constructed
by a limited number of latent topics. For instance, in image
annotation, the tags (tasks) “ocean” and “sky” can be treated
as a single latent topic, since they typically emerge together
and share similar color features. Thus, instead of directly
learning Θ ∈ Rd×T , we impose a low-rank constraint on
it, and restrict Θ to learn only a reduced number of effective
parameters, which is much less than d× T . To this end, ma-
trix factorization is applied to decompose Θ by Θ = WH,
where W ∈ Rd×K and H ∈ RK×T with K denoting the
number of latent topics, K ≤ T . Each column of W corre-
sponds to one latent topic, and H is usually considered as a
factor loading matrix, whose t-th column ht stores the coef-
ficients of K latent topics for the t-th task. In this sense, the
model parameter θt belonging to the t-th task enables to be
reconstructed by θt = Wht. This low-rank constraint matrix
decomposition not only captures task correlations, but also
controls overfitting by reducing the model size.



In terms of multi-view sparse learning, it is possible that a
small feature subset from one view is crucial to detect a cer-
tain topic, even though that view is not discriminative for the
topic. In other words, we expect that each topic is supported
by a specific subset of features, while different views con-
tributes distinct importance. A real example is image anno-
tation, where features from edge view are critical to detect a
latent topic comprising tags (tasks) “car”, “bus” and “truck”,
and almost irrelevant for the topic consisting of tags (tasks)
“ocean” and “sky”. Thus, to learn a topic-specific sparse
model and a view-weighting scheme, for the v-th view of the
k-th column (topic) of W, we decompose it by

wv
k = βvkα

v
k = αvk ◦ βvk1dv = αvk ◦ βvk , (2)

where αvk ∈ Rdv aims at selecting topic-specific features for
the v-th view, βvk ≥ 0 denotes the topic-specific weight of the
v-th view, and 1dv is a all-one vector in size of dv . Therefore,
the topic model W can be reformulated by

W = A ◦


1d1

. . .
1dV

B
 = A ◦B, (3)

where B ∈ RV×K with βvk being the element in the v-th
row of the k-th column, ∀t, v. In (3), A ∈ Rd×K and
B ∈ Rd×K store the topic-specific sparse model and the
view-weighting scheme, respectively, with the k-th column
being αk = [α1

k; ...;α
V
k ] and βk = [β1

k; ...;β
V
k ], respec-

tively. We then use `1-norm and Frobenius norm to regu-
larize A and B, respectively, with ‖A‖1,1 =

∑
ij |αij | and

‖B‖2F =
∑
ij |βij |2. In this way, topic-specific irrelevant fea-

tures will be discarded by A, while non-discriminative views
will be assigned with small weights by B.

Inspired by above motivations, we decompose the model
parameter Θ into a product of three component, i.e., Θ =
WH = (A◦B)H, and propose the multiplicative multi-task
multi-view sparse feature learning model as follows:

min
Θ

T∑
t=1

L(yt,
1

V
Xtθt) + λ1 ‖A‖1,1 + λ2 ‖B‖2F + η ‖H‖2F ,

s.t. Θ = (A ◦B)H, B ≥ 0. (4)
For the v-th view of the t-th task (∀t, v), we have

θvt = Wvht = (Av ◦Bv)ht =

K∑
k=1

hkt (α
v
k ◦ βvk), (5)

where hkt is the coefficient of the k-th topic for the t-th task.

4 Theoretical analysis
In this section, we present theoretical analysis of a general
form of (4), which helps us to develop an efficient algorithm
for a family of SPLIT. This general form is formualted by

min
Θ=(A◦B)H,

B≥0

T∑
t=1

L(yt,
1

V
Xtθt) + λ1

K∑
k=1

V∑
v=1

‖αvk‖
p
p

+ λ2

K∑
k=1

V∑
v=1

|βvk |q + η ‖H‖2F , (6)

Table 1: A summary of conclusions of Theorem 1 with p, q ∈
{1, 2}. Here R(W) is the regularization term w.r.t. W in (7).

(p, q) (1, 1) (1, 2) (2, 1) (2, 2)

γ 2
√
λ1λ2 γ = 2λ

2
3
1 λ

1
3
2 2λ

1
3
1 λ

2
3
2 γ = 2

√
λ1λ2

R(W)
∑
k,v

√
‖wv

k‖1
∑
k,v

3

√
‖wv

k‖
2
1

∑
k,v

3

√
‖wv

k‖
2
2

∑
k,v ‖wv

k‖2
βvk λ1λ

−1
2 ‖αvk‖1

√
λ1λ

−1
2 ‖αvk‖1 λ1λ

−1
2 ‖αvk‖

2
2

√
λ1λ

−1
2 ‖αvk‖

2
2

where ‖·‖p denotes `p-norm with ‖α‖p = p

√∑
j |αj |p. Ob-

viously, (6) becomes (4) with p = 1 and q = 2. The following
theorem1 shows that, under some conditions, (6) is equivalent
to a jointly regularized model.

Theorem 1. Let (Ŵ, Ĥ) be the optimal solution of the fol-
lowing optimization problem,

min
Θ=WH

T∑
t=1

L(yt,
1

V
Xtθt)+γ

K∑
k=1

V∑
v=1

2s

√
‖wv

k‖
p
p
+η ‖H‖2F ,

(7)
where wv

k is the v-th view sub-vector of the k-th column of
W. If {Â, B̂, Ĥ} is the optimal solution of (6), we have Ŵ =

Â ◦ B̂, given γ = 2

√
λ
2− p

qs

1 λ
p
qs

2 and s = p+q
2q . In addition,

the view-weighting component B̂ is related with the topic-
specific sparse component Â by the following formula

βvk = q

√
λ1λ

−1
2 ‖αvk‖

p
p
, ∀v, k. (8)

Theorem 1 reveals the family in (6) is equivalent to a jointly
regularized problem in (7) with a more general form of regu-
lariers, while Eq. (8) implies the sparsity of the topic-specific
component A is relative to the sparsity of the view-weighting
component B. A direct instantiation of Theorem 1 with p = 1
and q = 2 is exactly related with (4). Table 1 summarizes the
conclusions derived from Theorem 1 with p, q ∈ {1, 2}.

5 Optimization algorithm
Despite of the equivalence of (4) and (7), here we aim to solve
(4). It is because optimizing A and B separately is much
easier than optimizing W directly, and B gives some insight
into the relationship between views and topics. The objective
function of (4) is convex w.r.t. A, B and H, respectively,
which motivates us to develop an alternating algorithm. For
simplicity, least squared loss is considered here. The algo-
rithm repeats following three steps until convergence.

(i) Update A with fixed B and H:

min
A

T∑
t=1

∥∥∥∥yt − 1

V
Xt(A ◦B)ht

∥∥∥∥2 + λ1 ‖A‖1,1 . (9)

It is a lasso-like problem, which can be solved by many
efficient gradient descent optimization approaches. Let

1Proofs are provided in the supplement: https://www.dropbox.
com/s/vwl1jtt0qiso8j8/SPLIT sup.pdf?dl=0.

https://www.dropbox.com/s/vwl1jtt0qiso8j8/SPLIT_sup.pdf?dl=0
https://www.dropbox.com/s/vwl1jtt0qiso8j8/SPLIT_sup.pdf?dl=0


∇f(A) denote the derivative of the loss function in (9)
w.r.t A, whose k-th column equals to

∇f(A)|k =
2

V
βk◦

T∑
t=1

hktX
>
t

(
1

V
Xt(A ◦B)ht − yt

)
.

(10)
Then, proximal gradient descent method can be applied
to update A according to

A∗ ← soft(A− µ∇f(A), λ1), (11)

where soft(a, b) = sign(a)max(|a| − b, 0) is the soft
thresholding operator, and µ is the learning rate deter-
mined by line search.

(ii) Update B with fixed A and H: According to Theorem 1
and Table 1, B is solved with a closed-form solution.

(iii) Update H with fixed W = A ◦B:

min
H

T∑
t=1

∥∥∥∥yt − 1

V
XtWht

∥∥∥∥2 + η ‖H‖2F . (12)

Let X̃t = XtW, above problem has a closed-form so-
lution, whose t-th column is calculated by

ht = (
1

V
X̃>t X̃t + ηV IK)−1X̃>t yt. (13)

Since it typically follows K ≤ T � d, the closed-form
solution (13) can be efficiently computed.

Proposition 1. The proposed iterative optimization algo-
rithm does not increase the objective function of (4) at each
iteration, indicating that

J(A(i+1),B(i+1),H(i+1)) ≤ J(A(i),B(i),H(i)), (14)

in the (i+ 1)-th iteration, with J(A,B,H) denoting the ob-
jective function of (4) w.r.t. A, B and H.

Proposition 1 guarantees that the optimization algorithm
does not increase the objective value of (4) in each iteration.
In practice, accelerated proximal method [Nesterov, 2013] is
applied to accelerate the algorithm. In terms of time complex-
ity analysis, updating A comprises two major steps, gradi-
ent computation and soft thresholding, resulting in time com-
plexities of O(d(N + TK)) and O(dK), respectively, with
N =

∑
t nt being the total number of samples from multiple

tasks. Computation of B needs a time complexity ofO(dK),
and updating H with the closed-form solution has a time cost
of O(K2(N +TK)). Therefore, the total time complexity of
each iteration is O(d(N + TK) +K2(N + TK)), which is
linear in number of samples, features and tasks.

6 Experiments
6.1 Datasets and comparing methods
Four real-world datasets are used for performance evaluation,
and their statistics are summarized in Table 2. We compare
SPLIT with five methods for performance evaluation. Ridge
regression [Hoerl and Kennard, 1970] and Lasso [Tibshi-
rani, 1996] are selected as baseline methods. As representa-
tive MTL methods with multiplicative feature learning, MLL

Table 2: The statistics of used real-world datasets, where V and T
denote the number of views and tasks, respectively, dv is the number
of features in the v-th view (d =

∑
v dv), and ntp/ntn is the number

of positive/negative samples in the t-th task (nt = ntp + ntn).

Datasets V T dv d
nt URL

ntp ntn

Mirflickr 2 8 43∼150 193 668∼7,849 3,413∼10,594 URL1
Caltech101 6 4 40∼1,984 3,766 123∼798 1,588∼2,263 URL2
NUS-Object 5 7 64∼225 634 964∼2,370 8,000∼9,406 URL3
NUS-Scene 5 15 63∼224 629 1,039∼11,995 4,409∼15,365 URL3

URL1: https://press.liacs.nl/mirflickr/
URL2: http://www.vision.caltech.edu/Image Datasets/Caltech101/
URL3: http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

[Lozano and Swirszcz, 2012] and MMTFL [Wang et al.,
2016] enable to model various patterns of task-specific/task-
common features, and outperform several MTL methods
on real-world applications. As a state-of-the-art MVMTL
method, MFM [Lu et al., 2017] is selected due to its superior
performance compared with existing MVMTL methods. The
proposed SPLIT2 is implemented in two variants: SPLIT1

and SPLIT2, corresponding to p = 1 and p = 2, respectively,
both with q = 2 in (6). The difference between them is that,
for an irrelevant feature, SPLIT1 might shrink corresponding
element in A to zero, and SPLIT2 might shrink it to a small
non-zero value, instead.

6.2 Configuration
In evaluation, for each task we randomly select a%, 20%
and 20% of its total samples as training set, validation set
and testing set, respectively, with a ∈ {10, 20, 30}. We re-
peat this procedure five times, and report the mean value and
standard deviation of two metrics, Area Under ROC-Curve
(AUC) and Accuracy. Grid search is conducted on the eval-
uation set, and the best parameter setting is used for predic-
tion on the testing set. For grid search, values of regular-
ization coefficients of comparing methods are selected from
{10a

∣∣ |a| ∈ {0, 1, 2, 3, 4}}. The dimensionality of latent
space in MFM is set as 20, as recommended in [Lu et al.,
2017]. The number K of latent topics of SPLIT is set accord-
ing to K

T ∈ {0.3, 0.5, 0.7, 0.9}. For each iterative algorithm,
we terminate it once the relative change of its objective is be-
low 10−5, and set the maximum number of iterations as 1000.

6.3 Experiments on simulated datasets
Simulated datasets
For simulated datasets, we set the number of tasks and views
are set as T = 8 and V = 4, respectively, and select
the dimensionality dv of the v-th view from {25, 42, 58, 75}
with d =

∑
v dv = 200. Each task has the same num-

ber (n = 200) of labeled samples. The weight matrix Θ
is decomposed into three parts in a multiplicative way, i.e.,
Θ = (A◦B)H, with the latent dimensionality being K = 4.
Elements of A ∈ Rd×K are randomly sampled according to
normal distribution N (0, 16), while elements of B ∈ RV×T
and H ∈ RK×T are randomly sampled based on uniform dis-
tributions U(0, 1) and U(−1, 1), respectively. To make A and

2We provide the MATLAB code of SPLIT at: https://www.
dropbox.com/s/ej7joxq6nv2yoto/SPLIT.zip?dl=0

https://press.liacs.nl/mirflickr/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
https://www.dropbox.com/s/ej7joxq6nv2yoto/SPLIT.zip?dl=0
https://www.dropbox.com/s/ej7joxq6nv2yoto/SPLIT.zip?dl=0


Figure 2: Illustration of multiplicative feature decomposition by
SPLIT1 on simulated data with designed model Θ shown in Fig. 1.
The model Θ̂ = (Â ◦ B̂)Ĥ is learned by SPLIT1. Darker yellow
(blue) color indicates larger (smaller) values in magnitude.

Figure 3: Comparison of SPLIT1, SPLIT2 and two baseline meth-
ods on ten simulated datasets, which are generated by varying the
percentage of zero-elements in A from 0% to 90% by step 10%.

B sparse, a% and b% of total elements are assigned with value
0, respectively. Finally, for the t-th task, its target vector yt is
calculated by yt =

1
V Xtθt+ δt, where Xt is randomly sam-

pled from normal distribution N (0, 25), and δt ∼ N (0, 1)
denotes the stochastic noise.

Case study on feature decomposition and sparse learning
We illustrate multiplicative feature decomposition of SPLIT
on one designed synthetic dataset in Fig 23, where Θ̂ = (Â ◦
B̂)Ĥ is learned by SPLIT with the setting λ1 = 101, λ2 =
103 and η = 104. The designed model Θ = (A ◦ B)H
is shown in Fig. 1. As shown in Fig. 1 and Fig. 2, SPLIT1

successfully detects the underlying models by selecting topic-
specific features in A, learning view-wise weights in B, and
saving task correlation in W = A ◦B and H.

Next, to evaluate the performance of SPLIT on handling
the datasets with sparse underlying models, we conduct an
experiment on ten synthetic datasets by varying the percent-
age of zero-elements (irrelevant features) in A from 0% to
90% by step 10%. Fig. 3 shows the comparison result of
SPLIT1, SPLIT2 and two baseline methods, Lasso and Ridge,
in AUC and Accuracy. As the sparsity of A increases,
SPLIT1 and SPLIT2 consistently outperform two baselines
with a significant advantage. The sparse ratio 0.7 in A seems

3A quantitative comparison is presented in the supplement.

Figure 4: Performance of SPLIT1 on three simulated datasets by
varying its number K of latent topics from 1 to 8 by step 1. The
datasets are generated by changing the number K∗ of latent seman-
tics in truth model Θ∗ according to K∗ ∈ {1, 2, 4}.

to be a turning point for sparse methods (SPLIT1 and Lasso)
and dense methods (SPLIT2 and Ridge). Sparse methods per-
form worse than their dense counterparts when the ratio is be-
low 0.7, but outperform them once the ratio exceeds 0.7. It
shows that sparse learning is necessary for MVMTL, when
the underlying model is indeed sparse.

Analysis on task correlation modeling
To model task correlation, SPLIT constructs multiple tasks
based on a limited number of latent topics. We expect
that it would avoid overfitting, and give computational effi-
ciency. To evaluate this effect, we generate three simulated
datasets by changing the number K∗ of latent topics with
K∗ ∈ {1, 2, 4}, and apply SPLIT1 on each dataset by vary-
ing its number K of latent topics from 1 to 8 by step 1. As
shown in Fig. 4, as the value ofK increases, SPLIT consumes
more running time, because it needs to learn a larger number
of effective parameters. In terms of AUC, as the value of K∗
increases, SPLIT always achieves the best performance when
K = K∗. Therefore, once tasks are modeled by a small
number of latent topics in one dataset, SPLIT has a chance to
improve the performance in less running time.

6.4 Experiments on real-world datasets
Evaluation of comparing methods
For evaluation of comparing methods, we conduct an exper-
iment on four multi-view multi-task datasets, and report em-
pirical results in AUC and Accuracy by Table 34. In the
experiment, we change the ratio n/N of training samples
from 10% to 30% by step 10%. In Table 3, the best per-
formance is highlighted in boldface. For all methods, we
can see that as the ratio n/N increases, the performance in
both AUC and Accuracy increases as well. Specifically, the
two variants of SPLIT, SPLIT1 and SPLIT2, together per-
form the best in 20 cases out of total 24 cases. Such ob-
servation validates the effectiveness of SPLIT on handling
MVMTL problems via multiplicative sparse feature decom-
position. Its ability on selecting relevant features, weight-
ing different views and saving task correlation, leads to a
more powerful MVMTL learner. As multiplicative multi-
task learning methods, MLL and MMTFL perform the sec-
ond best, and compete with SPLIT1 and SPLIT2 on the Cal-
tech101 and NUS-Object datasets. It is probably because

4Statistical test on the results is provided in the supplement.



Table 3: Experimental results on four real-world datasets by selecting the percentage n/N of labeled data from {10%, 20%, 30%}.

AUC Accuracy
Dataset n/N Ridge Lasso MLL MMTFL MFM SPLIT1 SPLIT2 Ridge Lasso MLL MMTFL MFM SPLIT1 SPLIT2

Mirflickr
10% .615±.004 .623±.000 .637±.002 .635±.002 .618±.003 .638±.004 .639±.004 .775±.002 .777±.001 .788±.001 .787±.001 .766±.004 .791±.001 .792±.002
20% .630±.003 .632±.003 .652±.003 .651±.003 .615±.002 .656±.002 .655±.002 .780±.001 .780±.000 .792±.001 .792±.001 .767±.004 .794±.002 .795±.001
30% .650±.002 .652±.002 .663±.002 .664±.002 .620±.006 .667±.002 .666±.002 .784±.001 .785±.001 .794±.001 .794±.001 .770±.003 .798±.001 .797±.001

Caltech101
10% .986±.002 .990±.000 .998±.000 .997±.000 .978±.003 .991±.002 .990±.001 .929±.004 .983±.001 .978±.003 .983±.001 .969±.005 .981±.003 .982±.003
20% .990±.000 .990±.001 .997±.000 .997±.001 .987±.004 .999±.000 .992±.002 .981±.001 .986±.000 .981±.001 .983±.002 .974±.004 .991±.001 .989±.002
30% .990±.000 .990±.000 .999±.000 .999±.000 .990±.001 .999±.000 .992±.001 .986±.000 .987±.001 .993±.001 .990±.001 .984±.003 .991±.003 .990±.001

NUS-Object
10% .843±.004 .833±.002 .841±.006 .841±.013 .836±.002 .845±.004 .839±.004 .863±.003 .859±.001 .876±.001 .878±.005 .857±.001 .869±.003 .866±.001
20% .851±.002 .863±.001 .869±.001 .862±.004 .848±.001 .870±.001 .866±.001 .876±.001 .881±.001 .888±.002 .885±.003 .866±.002 .888±.002 .885±.002
30% .860±.002 .867±.003 .877±.002 .874±.002 .856±.003 .877±.002 .874±.001 .880±.001 .882±.001 .894±.001 .892±.001 .871±.001 .894±.001 .892±.001

NUS-Scene
10% .744±.006 .734±.012 .748±.003 .753±.003 .744±.005 .780±.001 .782±.002 .835±.001 .832±.012 .842±.001 .847±.000 .820±.003 .864±.001 .864±.001
20% .747±.001 .743±.001 .760±.002 .772±.002 .745±.001 .791±.001 .792±.001 .840±.001 .842±.001 .858±.001 .861±.001 .840±.006 .865±.001 .865±.000
30% .767±.001 .771±.001 .775±.004 .793±.001 .767±.005 .800±.001 .800±.001 .845±.001 .846±.001 .863±.000 .866±.001 .844±.008 .867±.001 .868±.001

Figure 5: Analysis on the view-weighting effect of SPLIT on the
NUS-Scene dataset. In this experiment, the training ratio is selected
from {10%, 20%, 30%}. SPLITλ2=0 is a degenerated variant of
SPLIT1 by assigning a same weight to all views.

both of the methods enable to select task-specific features and
encourage task correlations via common features. In terms of
two baseline methods, Lasso outperforms Ridge regression in
almost all the cases, indicating the importance on learning a
sparse model by discarding useless features for MVMTL.

Analysis on the view-weighting effect
To demonstrate the effectiveness of view-weighting compo-
nent B used in SPLIT, an experiment is performed by com-
paring SPLIT1 and SPLIT2 with a special variant SPLITλ2=0,
which removes the view-weighting component B and de-
composes Θ by Θ = AH. The training ratio is selected
from {10%, 20%, 30%}, and comparison results are shown
in Fig. 5. From Fig. 5, we can see that both SPLIT1 and
SPLIT2 significantly outperform SPLITλ2=0. It shows that it
is important to learn view-wise weights for performance im-
provement on the NUS-Scene dataset.

Sensitivity analysis on hyperparameters
To understand the behavior of SPLIT, sensitivity analysis on
hyperparameters is conducted on NUS-Object with the train-
ing ratio being 30%. SPLIT has three regularization param-
eters λ1, λ2 and η, controlling topic-specific sparsity, view-
wise importance and regression weight, respectively, and one
parameter K on the latent dimensionality, controlling the
strongness of task correlation. Values of λ1, λ2 and η are
selected from {10a

∣∣ |a| ∈ {0, 2, 4, 6, 8}}, while the value of
K is varied from 1 to 10 by step 1. Three experiments are
conducted to evaluate the pairwise correlation between the
parameters. The first experiment on λ1 and K is conducted

Figure 6: Sensitivity analysis of λ1, λ2, η andK on the NUS-Object
dataset. Values (shown in the logarithmic scale) of λ1, λ2 and η are
selected from {10a

∣∣ |a| ∈ {0, 2, 4, 6, 8}}, while the value of K is
varied from 1 to 10 by step 1.

by fixing λ2 = η = 1, and similar setting is applied for other
two experiments. Fig. 6 leads to three conclusions: (1) as
the value of K increases, the performance first increases, and
then becomes stable once K ≥ 5; (2) compared to λ2 and
η, the performance is more sensitive to the value change of
λ1; (3) the best performance on NUS-Object is achieved by
setting λ1 ≤ 102, and λ2, η ≤ 104.

7 Conclusion
In this paper, we propose a novel method, SPLIT, via multi-
plicative sparse feature decomposition, so as to address three
challenges in MVMTL: saving task correlations efficiently,
selecting relevant features and assigning view-wise weights.
Our theoretical analysis provides an equivalence guarantee of
SPLIT with a general form of joint regularization, according
to which two formulations with specific settings are proposed
and solved by an efficient optimization algorithm in a linear
complexity w.r.t. the data size. Extensive experiments on a
variety of datasets show that it is necessary for a successful
MVMTL method to model task correlation, select relevant
features and learn view-wise weights, and demonstrate that
the proposed SPLIT enables to address the challenges in both
simulated and real-world MVMTL applications.
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