
Linear Algebra and its Applications 438 (2013) 2331–2338

Contents lists available at SciVerse ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier .com/locate/ laa

A new dissimilarity measure for comparing labeled graphs

Nicolas Wicker a,∗, Canh Hao Nguyenb, Hiroshi Mamitsukab

a
Laboratoire Painlevé, Université de Lille 1, 59655 Villeneuve d’Ascq, France

b
Bioinformatics Center, ICR, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

A R T I C L E I N F O A B S T R A C T

Article history:

Received 6 June 2012

Accepted 6 October 2012

Available online 30 November 2012

Submitted by Shaun Fallat

AMS classification:

05C50

15A18

Keywords:

Labeled graph dissimilarity

Spectral graph comparison

Graph Laplacian

Weuse spectral graph theory to compare graphs that share the same

node set, taking into account global graph structures. We propose a

general framework using eigendecomposition of graph Laplacians.

We show its special cases and propose a new dissimilarity measure

that avoid problems of spectral analysis. The new dissimilarity em-

phasizes the importance of small eigenvalues which are known to

carry themain information on graphs. General properties of the dis-

similarity are discussed. The dissimilarity provides an efficient and

intuitive tool for graph analysis.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Graphs have been a topic of much interest due to many emerging data analysis applications having

graph representation. For that reason, graph data analysis has been one of the focuses. To name a few,

such problems exist in Systems Biology [7], Chemoinformatics [11] and web data. One of the tasks

of data analysis is to define similarities or distances among structured objects, comparing graphs is a

topic ofmuch interest. The comparison is common in various scenarios such as similarity graph search,

QSAR, or machine learning on graphs such as graph kernels [12].

Our target here is the problem of comparing different labeled graphs sharing the same node set.

This is a special case of comparing graphs in general. While general graph comparisonmethods can be

applied, there are methods that can only be applied in this particular problem setting. This problem
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arises in the case of comparing biological networks to see the similarities and differences between

species, building phylogenetic trees [6].

The simplest solution is to consider the adjacency matrices as vectors and compare them directly.

Themost famous one is certainly the edit-distance [10,4], also named Levenshtein distance,whichwas

initially developed to compare strings [8] and whose principle is simply to count the number of edges

that are present in one graph and not in the other. Many other distance measures approximate edit-

distances to account for its high computational complexity [13]. In this particular problem setting,

edit-distance naturally becomes the number of different edges in the graphs. This means that all

edges in the graph are considered of the same importance. This does not take into account global

graph structures, which could be a problem in the case that global graph structures matter.

Many other measures are based on substructures such as maximal common subgraph [2,5]. This is

based on the hypothesis that the semantics of the whole graph structures are based on the semantics

of their subgraphs. The candidate subgraphs usually arewalks, paths, frequent subgraphs [12]. In these

methods, graph comparison bases solely on the existence of subgraphs. These measures fail to keep

the graph structure as a whole and may not contain global structures for our interest. An attempt of

using the global graph structures is to use graph spectra to reduce the problem of comparing graphs

to the problem of comparing vectors [9].

In this work, we use spectral graph theory to compare graph in order to take into account global

graph structures.We show a general framework and property of graph comparison using graph spectra.

We show that some other similarity or dissimilarity measures are just special cases. A problem of the

framework is that one needs to do a spectral transformation that gives highweights to the eigenvalues

that are close to zero [3], and also ignores zero ones. Another problem is that graph comparison has

to be invariant under different eigenspace bases, a problem of spectral representation. We propose

a new dissimilarity measure that tackles these problems directly. Its advantages are shown on some

canonical examples and as well as its properties.

2. Graph Laplacian-based graph comparison

We show a simple example in which a graph is considered as a matrix or vector in Fig. 1. It is

noteworthy that this is equivalent to the edit-distance for our problem setting. We show that this

distance is not adequate. The reason is that graphs have structures that are not easily seen in matrices

or vectors. This motivates to use a representation that takes structure information into account. For

that reason, we use the structure information contained in eigenvectors and eigenvalues of graph

normalized Laplacians, henceforth simply called Laplacians.

In Fig. 1, we have five graphs G1, G2, G3, G4 and G5. The difference between G1 and G2 is only

one edge. There is also only one edge difference between G1 and G3 but G3 is not connected. While

considering graphs as matrices or vectors, the distance between G1 and G2 is the same as between

G1 and G3. However, G3 is totally different as it is not connected. Graph Laplacian can show this

information in its eigenspectrum. G4 and G5 are two extremal graphs, namely the totally disconnected

graph composed of 18 vertices and K18 the complete graph of size 18.

Fig. 1. Three graphs compared with our similarity.
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Table 1

Correlation-based similarity.

G1 G2 G3 G4 G5

G1 1 0.996 0.997 NaN 0.888

G2 0.996 1 0.993 NaN 0.882

G3 0.997 0.993 1 NaN 0.883

G4 NaN NaN NaN NaN NaN

G5 0.888 0.882 0.883 NaN 1

Table 2

Bregman divergences.

G1 G2 G3 G4 G5

0 0.210 0.123 24.127 5.118

0.210 0 0.33 24.414 5.412

0.123 0.33 0 24.375 5.364

24.127 24.414 24.375 0 19.059

5.118 5.412 5.364 19.059 0

2.1. General graph Laplacian-based graph comparison

Let us consider two graphs G1(V1, E1) and G2(V2, E2) which share the same set of vertices. Their

Laplacians L1 and L2 have eigenvalues in increasing order λ1, . . . , λn and μ1, . . . , μn respectively.

The corresponding eigenvectors are denoted u1, . . . , un and v1, . . . , vn. We suppose that they are

orthonormal, which is always possible as the Laplacians are symmetric.

We propose a general framework to compare graphs in the following form:

F(G1, G2) = ∑

i,j

f (λi, μj)|〈ui, vj〉|k, (1)

for any k ∈ N, k > 0. The function f : (R, R) → R is a comparison between eigenvalues. The

measure F is a similarity or dissimilarity function according to f .

Special realizations of this measure are:

1. Correlation-based similarity.Anatural similaritywhereunit lengthnormalizationof eigenvalues

and dot product are used in f .

C(G1, G2) = 1√∑
i λ

2
i

∑
i μ

2
i

∑

i,j

λiμj〈ui, vj〉2.

2. Bregman divergence (dissimilarity) with squared norm [1].

B(G1, G2) = ∑

i,j

(λi − μj)
2〈ui, vj〉2.

3. New dissimilarity measure. We propose a new dissimilarity measure between the two graphs

as follows:

D(G1, G2) = ∑

i,j

(λi − μj)
2

λi + μj

〈ui, vj〉2. (2)

Values are given for all graph pairs of Fig. 1 in Tables 1–3. Interestingly, D(G1, G2) = 0.122 and

D(G1, G3) = 0.124 showing that G1 is closer to G2 than to G3. Thus, the lack of connectivity has a

cost in the distance, due to the weighting by the eigenvalue inverses. This must be compared to the

corresponding values obtained for the Bregman divergence, G1 is then closer to G3 than to G2 which
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Table 3

New dissimilarity measure.

G1 G2 G3 G4 G5

0 0.122 0.124 18 2.876

0.122 0 0.244 18 3.057

0.124 0.244 0 18 3.078

18 18 18 0 18

2.876 3.057 3.078 18 0

is not a desirable result. On the contrary, the correlation based similarity has the same feature as the

proposed dissimilarity, making G1 closer to G2 than to G3. The drawback of this similarity is that when

all eigenvalues are equal to 0 or close to it the normalization factor cannot be computed anymore. Let

us remark at this point that our dissimilarity measure can also be naturally extended by continuity

when eigenvalues are equal to 0. Indeed, if we consider two small eigenvalues x and y. If they are

equal, (x − y)2/(x + y) = 0, otherwise let us suppose without loss of generality that x > y, then

(x − y)2/(x + y) < (x − y)2/(x − y) = x − ywhich tends to 0 when x tends to 0. Considering these

results, we have focused our study on the new dissimilarity d. It is indeed a dissimilarity and not a

distance, it is sufficient to notice in the previous example that D(G3, G1) + D(G1, G5) < D(G3, G5) to
make it clear.

2.2. Invariance property

We show that among all those possible graph comparisons in (1), only for k = 2, the comparisons

are invariant under different eigenvector bases of the graph Laplacian. Since the eigenvector bases are

not supposed to be unique, we mean that only k = 2 should be used for all these graph comparisons.

Theorem 1. The similarity/dissimilarity measures

F(G1, G2) = ∑

i,j

f (λi, μj)|〈ui, vj〉|k

are invariant to the choice of eigenspace bases if and only if k = 2.

Proof. Wewant to prove that themeasure F is invariant regardless of the choices of eigenvector bases.

Since choices only happen for eigenvectors of the same eigenvalues, it is sufficient to prove that F is

invariant if and only if k = 2.

Without loss of generality, if we suppose that v1, . . . , vl and v
′
1, . . . , v

′
l are two eigenvector bases

corresponding to one eigenvalue μ of L2. The invariance of F can be boiled down to its invariance in

the two bases. The necessary and sufficient condition for F to be invariant for any f is that for any unit

vector u

l∑

i=1

f (λ, μ)|〈u, vi〉|k =
l∑

i=1

f (λ, μ)|〈u, v′
i〉|k. (3)

This is equivalent to:

l∑

i=1

|〈u, vi〉|k =
l∑

i=1

|〈u, v′
i〉|k.

It is easy to see that for k = 2, this quantity is the length of the projection of u in the eigensubspace

of μ.
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Nowwe prove the other way around that, for k �= 2, the equality in (3) does not hold in general.We

construct a general counterexample as follow. Since the sets {v1, . . . , vl} and {v′
1, . . . , v

′
l} are distinct,

we can always choose a vector u in the former set not present in the latter one. Then,

l∑

i=1

|〈u, vi〉|k = 1,

because u is in the set. On the other hand,

l∑

i=1

|〈u, v′
i〉|k >

l∑

i=1

〈u, v′
i〉2 = 1

for k < 2, and

l∑

i=1

|〈u, v′
i〉|k <

l∑

i=1

〈u, v′
i〉2 = 1

for k > 2. Therefore, in general, the equality in (3) does not hold for k �= 2. �

Corollary 1. The dissimilarity function we proposed is invariant under any choice of eigenspace base.

This desirable property has been proved in Theorem 1, remarking that

|〈u, v〉2| = 〈u, v〉2.

3. Properties of the new dissimilarity measure

We can show some properties of the new dissimilarity measure. In particular, it behaves well with

regard to graph connectivity.

Theorem 2. Dissimilarity D(G1, G2) = 0 implies that the Laplacians L1 and L2 eigendecompositions of

G1 and G2 are equal.

Proof. First we prove that ∀i ∈ 1, . . . , n, λi = μi. Let us consider that there is an eigenvalue λ

which has multiplicity m1 in L1 and m2 in L2 with m1 �= m2. Then, the subspace E⊥
λ orthogonal

to the eigenspace Eλ of L1 for eigenvalue λ has dimension n − m1. As D(G1, G2) = 0 the eigenvec-

tors corresponding to λ in L2 are orthogonal to E⊥
λ , so that E⊥

λ has dimension n − m2 leading to a

contradiction.

Now,we can prove that the eigenspaces are the same. If we take any eigenvalue λ, forL1, obviously,

Eλ is orthogonal to all other eigenspaces. As forL2, its eigenspace Fλ for eigenvalueλ is also orthogonal

to E⊥
λ as D(G1, G2) = 0, so that Fλ = Eλ. This is true for every eigenvalue λ and so the proof is

completed. �

An important consequence of this theorem is that if D(G1, G2) = 0, the Laplacians and hence the

graphs are the same.

4. Experiments

We conducted some experiments to demonstrate the properties of our dissimilarity measure in

comparison with the correlation-based similarity, the Bregman divergence and the edit distance. The

experimental setting was as follows.We started with a canonical graph G consisting of 9 disconnected
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Fig. 2. Results for the correlation-based similarity. Horizontal axis shows the indices of graphsWi and Bi and vertical axis shows the

correlation-based similarity: C(G,Wi) (bullets) and C(G, Bi) (circles).
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Fig. 3. Results for Bregman divergence. Horizontal axis shows the indices of graphs Wi and Bi and vertical axis shows the Bregman

divergence: B(G,Wi) (bullets) and B(G, Bi) (circles).

subgraphs. Each subgraph was a 3-regular graph with 25 nodes. We generated 100 graphs, denoted

Bi, ∀i = 1 · · · 100 , by adding randomly i edges connecting two nodes belonging to 2 different sub-

graphs of the 9 subgraphs (between subgraph edges). We also generated 100 other graphs, denoted

Wi, ∀i = 1 · · · 100, by adding randomly i edges connecting any two nodes in the same subgraph of the

9 subgraphs of G (within subgraph edges). It was our idea to generate the Bi graphs so that by adding

edges between subgraphs, the connectivity of the graphswould changemore than in the case of adding

edges within subgraphs in theWi graphs (the former case connects disconnected subgraphs while the

latter does not). We wished dissimilarity measures reflect that graphs Bi are more dissimilar to G than

its counterpart,Wi to G.

Experimental results are shown in Figs. 2, 3 and 4 for the correlation-based similarity, the Bregman

divergence and the new dissimilarity measure. The following are observed.
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Fig. 4. Results for the new dissimilarity measure. Horizontal axis shows the indices of graphs Wi and Bi and vertical axis shows the

dissimilarity measure: D(G,Wi) (bullets) and D(G, Bi) (circles).

1. The edit-distance, in our problem setting being the number of different edges, is the same for

the Bi andWi graph pairs, so graphs are not shown for it.

2. The correlation-based similarity and the Bregman divergence in Figs. 2 and 3 respectively, do

not show much difference between the Bi andWi graph pairs.

3. The new dissimilarity measure, as in Fig. 4, shows for the Bi andWi graph pairs that graph Bi are

more dissimilar than Wi, as we wish for in our experimental setup.

We conclude that, our proposed new dissimilarity measure is able to distinguish the differences of

graphs with different graph connectivities while the others are not.

5. Conclusion

We have presented a framework for comparing graphs with the same node set, taking into account

global graph structures. Properties of the framework are shown as well as special cases, including a

new graph dissimilarity that is straight-forward to compute and, at the same time, has some nice

properties. First, it is invariant under different graph eigenspace bases, making it independent of the

eigendecomposition process. Second, a zero dissimilarity actually indicates that the two graphs are

equal. Then, we have specifically aimed at having a dissimilarity giving more weight to eigenspaces

with small eigenvalues. Themeasure proves to be able to take into account global structures in the toy

example and the experiments.
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