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Exploiting prior/human knowledge is an effective way to enhance Bayesian models, especially in cases of
sparse or noisy data, for which building an entirely new model is not always possible. There is a lack of
studies on the effect of external prior knowledge in streaming environments, where the data come
sequentially and infinitely. In this work, we show the problem of vanishing prior knowledge in streaming
variational Bayes. This is a serious drawback in various applications. We then develop a simple framework
to boost the external prior when learning a Bayesian model from data streams. By boosting, the prior
knowledge can be maintained and efficiently exploited through each minibatch of streaming data. We
evaluate the performance of our framework in four scenarios: streaming in synthetic data, streaming sen-
timent analysis, streaming learning for latent Dirichlet allocation, and streaming text classification, in
comparison with the methods that do not keep priors. From extensive experiments, we find that when
provided good external knowledge, our framework can improve the performance of a Bayesian model,
often by a significant margin for noisy and short text streams.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction works or online forums) with contradicting or irrelevant information
In the world of data explosion, designing a model that can cap-
ture continuously upcoming data is a basic need. By considering
that new data depend on the past data in a probabilistic way, the
Bayesian approach is highly suitable to model data streams where
the data come sequentially and infinitely. Many researches have
been successful in using this idea [1–5]. Through streaming learn-
ing methods, a model can be learned in a forward way without
revisiting the old data, and hence more efficiently in terms of time
and memory space. However, many challenges exist, including ex-
treme sparsity and noisy data.

Sparsity in which the observed data are (extremely) sparse in
nature is prevalent in practice, such as user ratings in recom-
mender systems [6,7], and posts/comments from social networks
[8–10]. Sparse data contain little information, and thus pose a sev-
ere challenge for modeling even in cases of very large number of
samples [11].1 Further, noisy data (e.g., comming from social net-
present inherent difficulties for modelling [12–16]. Fig. 1 shows two
examples where the learnt models seem to encounter severe overfit-
ting as learning from noisy and sparse data. For those challenges,
designing an entirely new model is not always possible and possibly
takes a high cost. Therefore providing human knowledge is often a
good choice to improve a Bayesian model.

Consider the task of learning from a data stream, where the data
come sequentially and infinitely. Existing learning methods have
difficulties to effectively exploit prior knowledge. Streaming varia-
tional Bayes (SVB) [1] can use the external knowledge as initial
prior at the first step of the learning process. However, in other
steps, the prior is replaced by the posterior learned from the previ-
ous learning step. This strategy leads to losing information from
the past, as shown in Section 3.2, and limits the effect of external
knowledge. Population variational Bayes (PVB) [2] employs a popu-
lation distribution to capture streaming data. Masegosa et al. [3]
develop SVB further to balance the old and new knowledge, all
learned from data, in a Bayesian way. Faraji et al. [5] study the
same problem as [3], while Theis and Hoffman [19] develop a vari-
ant of stochastic variational inference (SVI) [20] for data streams.
Due to the ignorance of external knowledge, those studies are lim-
ited when we want to exploit valuable knowledge in order to deal
with the three challenges above. Note that good prior knowledge
are now available in various forms including ontologies, open
knowledge bases (e.g., Wikipedia), word embeddings, unsuper-
vised pre-trained models [21,22], Zipf’s law, etc.
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Fig. 1. Examples of severe overfitting when Streaming variational Bayes [1] does
learning from noisy and short text streams, where ’Batch size’ is the size of the data
received at each time step. (a) shows the accuracy of the Aspect and Sentiment
Unification model [17] for sentiment analysis. (b) shows the predictive probability of
the latent Dirichlet allocation model [18] for text analysis. Higher is better. Music
contains 136 K online reviews about musical instruments, collected from http://
www.cs.jhu.edu/~mdredze/datasets/sentiment/. Yahoo is the dataset consisting of
500 K questions, crawled from http://answers.yahoo.com/, each question is noisy
and extremely short [10]. The shadow shows the variance of the empirical result w.
r.t. different runs.
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In this paper, we make the following contributions:

� We show that SVB will quickly forget the prior knowledge
through the streaming learning process.
� We then propose a simple framework for boosting prior knowl-
edge in streaming Bayesian learning (BPS), a variant of SVB. Our
framework emphasizes the role of the prior by encoding it in
every step, therefore the valuable prior can be efficiently
exploited in the entire learning process.
� We conduct experiments in four scenarios: streaming learning
with synthetic data, streaming learning for unsupervised senti-
ment analysis [17], streaming learning for latent Dirichlet allo-
cation (LDA) [18], and streaming classification [23,24].
Comparing with the framework that does not keep prior, BPS
gives a significant improvement in performance. We further
find that the improvement of BPS over SVB is often with a large
margin for short text. This suggests that an appropriate
exploitation of prior human knowledge in streaming environ-
ments will provide significant benefits, especially for short text
and sparse data.

1.1. Further related work

Many researches have gained significant evidences in improv-
ing Bayesian models by incorporating prior knowledge. Diamond
and Kaul [25] showed the effect of using prior from megatrials in
Bayesian analysis for clinical data. Alfaro and Holder [26] used
prior in phylogenetics to learn a Bayesian model of biological data.
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For text data, by capturing the Zipf’s law [27,28], the performance
of topic models can be improved [29] in comparison with LDA [18].
In text classification, Lin et al. [30] used an asymmetric prior which
gave high weight for seed words of each class to gain better perfor-
mance. In sentiment analysis, some studies [17,31] exploited a
word list that consists of a predefined set of positive and negative
words in learning Bayesian models to determine the sentiment of
each document. However, most of those existing researches focus
on static conditions, leaving an unexplored problem of how to
exploit human knowledge in streaming environments where the
data come sequentially and infinitely. Such an unexplored problem
is the object of interest in this work.

AA Another term related to prior is power prior [32,33]. Power
prior is used to balance the old knowledge learned from past data
and the new knowledge learned from the current minibatch of
data. While the initial prior is gained even when there is no data
received, it can be provided from external knowledge that is out-
side of the observed data. Nonetheless, existing studies [5,3,19]
did not emphasize in the role of the external prior but concern
more on balancing the old and new knowledge which are all
learned from data.

Other related topic is stochastic methods for training a Bayesian
model from a dataset of big size. Examples include stochastic varia-
tional inference (SVI) [20] and memorized online variational infer-
ence (MOVI) [34]. The problem setting in our work is learning
froma data stream,where the data come sequentially and infinitely.
SVI andMOVI seem to be unsuitable for this problem setting. SVI not
only requires to know the data size in advance, but also assumes the
ability to have multiple learning passes over the whole data. MOVI
divides dataset into the fixed number of minibatches and iterates
through each minibatch multiple times. Both SVI and MOVI can
workwell on a big (but fixed) training data. However, in the stream-
ing environment, since the dataset size is infinite and the underlying
properties of the data may change over time, iteratively going
through all minibatches is intractable. Some works [19,2] already
pointed out those limitations of SVI (and MOVI).

1.2. Roadmap

Section 2 briefly presents some preliminaries with basic nota-
tions in Table 1. Section 3 reviews the SVB framework and the
problem of vanishing priors. In Section 4, we propose the BPS
framework. Section 5 presents case studies in applying SVB and
BPS in streaming learning. Finally, Section 6 concludes our work.

2. Background

2.1. Variational inference

Variational inference is an approximate technique to solve
Bayesian inference problem [35]. Formally, datum x is assumed
to be generated from a Bayesian model with the prior g, the model
parameter b and the hidden variable z. The task is to find the value
of b and z to maximize the log likelihood function of the observed
data x:

logpðxjgÞ
In the variational inference, instead of searching for the whole

space of b and z, we seek a variational distribution qðb; zj�; cÞ,
which approximates pðb; zÞ. We have:

logpðxjgÞ ¼ log
R R

b;z
pðx;b;zjgÞ:qðb;zj�;cÞ

qðb;zj�;cÞ dbdz

¼ Eq½logðpðx; b; zjgÞ� � Eq½logðqðb; zj�; cÞ�
ð1Þ

þ Eq½log qðb; zj�; cÞpðb; zjg; xÞ� ð2Þ



Table 1
Some basic notations.

x a data point
Ci a minibatch – a collection of data points

b; z;U model’s paremeters
g prior
jjXjj ‘1 norm of X
�; c variational parameter symbols
n natural parameter of an exponential family
~ni learned information of a minibatch i
i.i.d independent and identically distributed
s scale ratio
r boosting rate

Table 2
Some distributions in the exponential family.

Distribution Parameters Natural parameter
g

Sufficient statistic
TðxÞ

Bernoulli p ln p
1�p x

Poisson k ln k x
Normal l;r2 l

r2

1
2r2

" #
x
x2

� �

Gamma a;b a� 1
�b
� �

ln x
x

� �
Multinomial p1; . . . ;pkPk

1pi ¼ 1

lnp1
. . .
lnpk

2
4

3
5 x1

. . .
xk

2
4

3
5

Dirichlet a1; . . . ;ak a1
. . .
ak

2
4

3
5 ln x1

. . .
ln xk

2
4

3
5

Fig. 2. Adding prior of exponential family.
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Assuming that both b and z are continuous, otherwise integra-
tion is replaced by summation.

Note that the element in (2) is the Kullback Leibler (KL) diver-
gence [36] between the approximate variational distribution
qðb; zj�; cÞ and the true distribution pðb; zjg; xÞ which has
KLðqjjpÞP 0. Now denoting the element in (1) by Lð�; c;g; xÞ, we
get:

logpðxjgÞ ¼ Lð�; c;g; xÞ þ KLðqjjpÞ ð3Þ
so that:

logpðxjgÞP Lð�; c;g; xÞ
Lð�; c;g; xÞ is a lower bound of the likelihood function. Maximiz-

ing the lower bound L is equal to minimizing the KL distance
between the variational distribution q and the posterior p. The
form of q is selected in order to make L to be tractable or easier
to optimize than the original likelihood function. The solution q
is an approximation for the posterior p; hence:

pðb; zjg; xÞ � qðb; zj�; cÞ
2.2. Additive property of the prior of exponential family

In probability and statistics, exponential family is a popular
class of distributions that subsumes many common distributions
including Bernoulli, Poisson, normal, gamma, multinomial and
Dirichlet distributions (Table 2). Their density function is of the
form:

f XðxjgÞ ¼ hðxÞ expððg � TðxÞ � AðgÞÞ
where g is the natural parameter, TðxÞ is the sufficient statistics,
hðxÞ is a known function, and AðgÞ is a normalizing element.

Consider an observed datum x generated from an exponential
distribution with prior which is encoded in the natural parameter
g, and we know one more information that x is also contributed
independently by another prior ĝ in the same family of distribu-
tion, see Fig. 2. We have:

pðxjg; ~gÞ / pðxjgÞpðxjĝÞ ð4Þ
/ hðxÞĥðxÞ expððgþ ĝÞ � TðxÞÞ ð5Þ

which has f Xðxjgþ ĝÞ as its density function. The new prior for x has
the natural parameter that is the sum of the two natural parame-
ters: g and ĝ, this is the additive property of exponential family.

2.3. Latent Dirichlet allocation

We briefly describe latent Dirichlet allocation (LDA) [18], a well-
known model, which will be referred in several parts later.

Formally, LDA (Fig. 3) is a generative model for modeling text
data. It assumes that a corpus C containing M documents is
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composed from K topics of V words, b ¼ ðb1; . . . ; bKÞ, each of which
is drawn from a V-dimensional Dirichlet distribution:
bk � DirichletðgÞ. Each document d is a mixture of those topics
and is presumed to be created by the following generative process:

1. Draw topic mixture hja � DirichletðaÞ
2. For the ith word in document d:
� Draw topic index zijh � MultinomialðhÞ
� Draw word wijzi; b � Multinomialðbzi Þ

The learning problem of LDA is to estimate the posterior
pðh; z; bjC;a;gÞ of the latent variables. Nonetheless, this problem
is intractable. Applying variational inference, we approximate

pðh; z;bjC;a;gÞ � qðh; z;bjc;/; kÞ ¼ qðhjcÞqðzj/ÞqðbjkÞ

where c;/; k are the parameters of the following variational
distributions:

qðhÞ ¼ DirichletðhjcÞ
qðbÞ ¼ MultinomialðbjkÞ
qðzÞ ¼ Multinomialðzj/Þ

and
P

k/dkv ¼ 1. According to [18], we have the lower bound of the
log likelihood of C:

L ¼
X
d

Eq logðwd; hd; z; bÞ � Eq log qðc;/; kÞ
� �

¼
X
d

Eq½logpðwdjzd;bÞ� þ Eq½logpðzdjhdÞ�
�

�Eq½log qðzdÞ� þ Eq½logpðhdjaÞ� � Eq½log qðhdÞ�
�

þEq½logpðbjgÞ� � Eq½log qðbÞ�
Taking partial derivative of L with respect to / and c and set

them to zero, we have the following inference equations for local
variables:



Fig. 3. Graphical representation for LDA.
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Algorithm 1 Inference of local variables in LDA

Input: Document d, global variable k
Output: Local variables cd, /d

Randomly initialize cd;/d.
repeat
Compute /d as in Eq. 6
Compute cd as in Eq. 7

until convergence

Algorithm 2 Learning LDA using variational inference

Input: Prior g, hyper-parameter a, data C
Output: k
Initialize: k0  g
repeat
Inference:
for each document d in C do
Infer /d; cd by Algorithm 1

end for
Update:
kkv ¼ gþPd

P
vndv/dkv

b / k
until convergence

/dkv / expfEq½log hdk� þ Eq½logbkv �g ð6Þ
cdk ¼ aþ

X
v
ndv/dkv ð7Þ

Similarity, by taking the partial derivative of L with to k and set
it to zero, the update equation for k is:

kkv ¼ gþ
X
d

X
v
ndv/dkv ð8Þ

where ndv is the frequency of word v (v 2 f1; . . . ;Vg) appearing in
document d.

We sum up the inference procedure using variational inference
for LDA in Algorithm 1 and the learning algorithm for LDA in Algo-
rithm 2.

3. Revisiting streaming variational Bayes

In this section, we briefly review the streaming variational
Bayes framework (SVB) [1] for learning a Bayesian model from a
data stream, then discuss the problem of vanishing prior in this
framework.
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3.1. Streaming variational Bayes

Streaming data is considered as a sequence of minibatches
fCigi¼1!b, where b can be infinite. Each instance is assumed to be
generated from a Bayesian model with parameter U. The learning
problem is to find fUg that maximizes the posterior:

pðUjC1;C2; . . . ;CbÞ ð9Þ
There is a general framework for computing the posterior in Eq.

9. The idea is to use the prior from the past data and information
from the current data. Fig. 4 provides a graphical representation
of their idea.

Given the prior g, presuming that b� 1 minibatches have been
processed, the posterior after b minibatches can be calculated
using Bayes rule:

:pðUjC1;C2; . . . ;Cb�1;Cb;gÞ ð10Þ
/ pðCbjU;gÞpðUjC1;C2; . . . ;Cb�1;gÞ ð11Þ

/ pðUjCb;gÞ
pðUjgÞ pðUjC1;C2; . . . ;Cb�1;gÞ ð12Þ

Which means that the posterior after b minibatches is propor-
tional to the product of the likelihood of current data pðCbjU;gÞ
and its prior pðUjC1;C2; . . . ;Cb�1;gÞ. Note that the prior element is
also the posterior of b� 1 minibatches, so the posterior can be
computed sequentially. Unfortunately, the posterior in Eq. 11 is
often intractable to precisely compute. This problem leads to the
need for an approximation method. Using the variational inference,
we approximate:

pðUjCÞ � qðUjnÞ / expðn � TðUÞÞ ð13Þ
and:

pðUjC1;C2; . . . ;Cb�1;gÞ � qðUjnb�1Þ ð14Þ
pðUjCb;gÞ � qðUjn̂bÞ ð15Þ

Assume that the initial prior pðUjgÞ ¼ qðUjn0Þ. Here the prior g
is transformed to a natural parameter of an exponential family:
n0  g, so n0 is also called as the initial prior knowledge. Now com-
bining these approximates with Eq. 12, we have:

qðUjnbÞ �
qðUjn̂bÞ
qðUjn0Þ

qðUjnb�1Þ ð16Þ

Taking the log function for both sides and use (13), we obtain

nb ¼ ðn̂b � n0Þ þ nb�1 ð17Þ
Denote:

n̂b � n0 ¼ ~nb ð18Þ
We have:

nb ¼ ~nb þ nb�1 ð19Þ
¼ ~nb þ . . .þ ~n1 þ n0 ð20Þ
Eq. 19 is the streaming update function of the SVB framework

[1]. It shows that the current model’s parameter is equal to the
sum of the past parameter nb�1 with the learned information ~nb
from current data, and hence SVB provides us a principled way to
model streaming data without revisiting past data.

3.2. The problem of vanishing prior

A drawback in the SVB framework is the vanishing prior prob-
lem. In other words, the information from the prior is probably
vanished through learning process. This subsection will show this



Fig. 4. Graphical representation of SVB for learning from streaming data.
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phenomenon for LDA model in particular, and for any model
learned by SVB.

Replacing Eq. 18 with n0 ¼ g and n̂ ¼ k, we have the following
for the bth minibatch:

~nbkv ¼ n̂bkv � n0kv ¼
X
d2Cb

/dkvndv : ð21Þ

As a result, the prior n0 in SVB is used only one time in the initial
stage as in Eq. 20. It is clear that the learned parameters ~nb repre-
sent the learned information from minibatch data b; ~n1 þ . . .þ ~nb
represents the total information learned from the data, and n0 rep-
resents the information from the prior.

We will analyze the ratio between the norms of information
learned from the data and the information from the prior.

Lemma 3.1 (LDA). The SVB update of the LDA model has the
following property:

jjnb � n0jj ¼ jjn
�
1 þ . . .þ n

�
bjj ! þ1 as b! þ1;

jjn
�
1þ...þn

�
b jj

jjn0 jj ! þ1 as b! þ1;
ð22Þ

suggesting that as b increases, the information from the prior n0 quickly
becomes vanishing in comparison with the learned information
~n1 þ . . .þ ~nb from data.
Proof. It is clear that jjn0jj is a constant. We now prove
jj~n1 þ . . .þ ~nbjj ! þ1asb! þ1. Because

P
k/dkv ¼ 1 and

~nbkv P 0, from Eq. 21 we have the following for any b P 1:

jj ~nbjj ¼
X
k

X
v

~nbkv ¼
X
d2C

X
k

X
v
/dkvndv ð23Þ

¼
X
d2C

X
v
ndv
X
k

/dkv ð24Þ

¼
X
d2C

nd ð25Þ

P 1: ð26Þ
So

jj~n1 þ . . .þ ~nbjjP b;

which means jjn
�
1 þ . . .þ n

�
bjj ! þ1 as b! þ1. h

The result in Lemma 3.1 can be interpreted as following: In SVB
with the initial prior only exists in the first stage, through the
stream learning process, the new knowledge is added into the
model’s parameter. When data is big enough, almost all informa-
tion in the model’s parameter comes from the data and the role
of the initial prior will vanish quickly. This problem can be easilly
seen in LDA.Next, we discuss the vanishing prior phenomenon of
SVB in broader contexts. For more complex models, such a phe-
nomenon is not easily observed. We have to employ the well-
known law of large numbers under some assumptions. Formally,
we have the following.
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Lemma 3.2 (Other models). Assuming that the learned information

f~nhg
b
h¼1 are i.i.d samples from a probability distribution with mean

�n– 0, we have the following property for SVB with probability 1:

jjnb � n0jj ¼ jjn
�
1 þ . . .þ n

�
bjj ! þ1 as b! þ1;

jjn
�
1þ...þn

�
b jj

jjn0 jj ! þ1 as b! þ1;
ð27Þ

suggesting that as b increases, the prior n0 quickly becomes vanishing in

comparison with the learned information ~n1 þ . . .þ ~nb from data.
Proof. Using the law of large numbers, we have:

Pr lim
b!þ1

~n1 þ . . .þ ~nb
b

¼ �n

 !
¼ 1;

suggesting that

Pr lim
b!þ1

jj~n1 þ . . .þ ~nbjj
b

¼ jj�njj
 !

¼ 1;

and because jjn0jj is a constant, we have:

Pr lim
b!þ1

jj~n1 þ . . .þ ~nbjj
jjn0jj

¼ þ1
 !

¼ 1:

h

This lemma shows that, in general using SVB in streaming learn-
ing will lead to the problem of losing the prior information.
Although the assumption of Lemma 3.2 is not always met, the
result provides a significant message for practice of streaming
learning, especially when we have valuable prior knowledge about
the domain/task of interest.

Considering the circumstances that we have valuable prior
human knowledge that describes properties of data, losing the
information of these priors in the learning process is highly waste-
ful. Bayesian methods often assume the data to be generated from
a probabilistic process. If no knowledge is present, those methods
can learn information efficiently only from data. However, note
that most models are mis-specified, and as a consequence, might
not model the data exactly. From this reason, combining prior
human knowledge into a Bayesian model is an essential method
to improve the quality of Bayesian models.

To overcome the problem of vanishing prior in SVB, we propose
a framework for Bayesian learning to maintain the valuable infor-
mation from the initial prior.

4. Boosting prior knowledge in streaming Bayesian learning

In this section, we first present the BPS framework for boosting
the valuable prior knowledge in SVB. We then propose to choose
the linear boosting function and analyze some advantages of such
a choice. Finally, we discuss how to balance between boosted prior
and the knowledge learned from each minibatch of data.

4.1. The BPS framework

The idea of BPS is to directly add one more prior information ĝ
to each minibatch. Fig. 5 depicts this idea clearly. The new prior ĝb

of the minibatch b is a boosting function of the initial prior g so
that it reflects how the prior knowledge impacts to each minibatch
of the streaming learning process.

ĝb ¼ f̂ bðgÞ ð28Þ



Fig. 5. Graphical representation for BPS.
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An additional prior in the form of an exponential family
p̂ðUjĝbÞ / expðĝb � TðUÞÞ is used in each minibatch. To emphasize
the role of the new prior ĝb, we will optimize the following
probability:

pðUjĝbÞpðCbjU;gÞpðUjC1;C2; . . . ;Cb�1;gÞ ð29Þ

¼ pðUjĝbÞpðUjCb;gÞ
pðUjgÞ pðUjC1;C2; . . . ;Cb�1;gÞ ð30Þ

With n̂b0  ĝb, using the additive property of prior for exponen-
tial family and the variational method, we have an approximation:

pðUjĝbÞpðUjCb;gÞ / pðUjCb; ĝb þ gÞ ð31Þ
� qðUjn̂bÞ ð32Þ

Replacing Eqs. (32)–(30), we have the new update function:

nb  ðn̂b � n0Þ þ nb�1 ð33Þ
Supposing that n̂b can be decomposed into the sum of the

learned information ~nb and the prior n0 þ n̂b0, i.e.,

n̂b ¼ ~nb þ ðn0 þ n̂b0Þ, then Eq. 33 becomes:

nb ¼ ~nb þ n̂b0 þ nb�1 ð34Þ
The difference between the streaming update function in Eq. 34

of BPS and the one of SVB in Eq. 19 is that there is an additional ele-
ment of the boosting prior n̂b0. This property means that BPS boosts
the knowledge from the initial prior through streaming learning
process. If we set ĝb ¼ 0, the BPS will become SVB.

4.2. Linear boosting function

In BPS, we introduce a boosting function in Eq. 28 that describes
how the original prior impacts on the learned model. Now we pro-
pose a simple form of the boosting function in term of linear rela-
tionship with a boosting rate rb 2 R:

ĝb ¼ f̂ bðgÞ ¼ rbg ð35Þ
Assuming g is the natural parameter in the exponential form of

prior knowledge pðUjgÞ / expðg � TðUÞÞ, we will show that with the
linear function in Eq. 35, the new prior pðUjrgÞ will keep some
main features of the original prior distribution with a level of
importance.

Definition: The feature points Uf of a probability distribution
pðUjgÞ are defined by its local extrema.

The feature points Uf can be used to describe the shape of the
prior distribution, containing stationary points and boundary
points. The local maximal points are positions that have high den-
sity, and the local minimal points have low density.

Taking derivative of the density functions of pðUjgÞ and pðUjrgÞ
over U, we have:
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g0g ¼
@ðexpðg � TðUÞÞ

@ðUÞ ¼ expðg � TðUÞÞ @ðg � TðUÞÞ
@ðUÞ

and

g0rg ¼
@ðexpðrg � TðUÞÞ

@ðUÞ ¼ expðrg � TðUÞÞ r@ðg � TðUÞÞ
@ðUÞ

Obviously, g0g ¼ 0 and g0rg ¼ 0 have the same set of solutions
which means both pðUjgÞ and pðUjrgÞ have the same feature points
Uf .

In other aspect, we interpret the value of g0 near a feature point
as the changing of the concentrated density around the feature
point. The big value of g0 means that there is a high concentrated
density level or a high important level.

Assuming g � TðUÞ > 0, it is clear that if r < 1, then jg0rgj < jg0gj,
we decrease the important level of feature points. Otherwise, if
r > 1, then jg0rgj > jg0gj, we increase the important level of feature
points. In another words, by changing the value of boosting rate in
the linear boosting function, we can change the important level of
feature points of the prior distribution.

To illustrate this property, we consider an example with Dirich-
let distribution on the 2-simplex x1; x2; x3:

pðx1; x2; x3Þ

¼ 1
x1x2x3

expð
X3
i¼1

gi lnðxiÞ �
X3
i¼1

lnCðgiÞ � lnCð
X3
i¼1

giÞÞ

In this example, the natural parameter g ¼ ½4;5;6�, and the
boosting rates are tested with: 0.5, 1 and 1.5 respectively. The
results are shown in Fig. 6. Intuitively, the figure shows that the
bigger boosting rate, the more concentrated level of the density.

4.2.1. Relation to power prior
In BPS, we observe that expðrg � TðUÞÞ ¼ expðg � TðUÞÞ½ �r . This is

equivalent to the use of the variational distribution of the following
form

qðUjĝÞ / qðUjgÞr ð36Þ
In fact, linear boosting means that we use a power scale of the

initial prior. This concept is related with the power prior method in
[32,33,3], but BPS has some significant differences.

In power prior, presume the model’s parameter U has the initial
uninformative prior pðUjgÞ, a past data C0 and a power factor q.
The power prior is defined by:

pðUjC0;gÞ / LikelihoodðUjC0Þq:PriorðUjgÞ ð37Þ

¼ pðC0jUÞq:pðUjgÞ: ð38Þ
Receiving new data C leads to the posterior:

pðUjC;C0;gÞ / pðCjUÞ:pðUjC0;gÞ
¼ pðCjUÞ:pðC0jUÞq:pðUjgÞ:

ð39Þ

The power prior depends on the past data and the power ele-
ment is the likelihood of the past data C0, while BPS straightfor-
wardly powers the initial prior. On the other hand, the power
prior method modifies the prior for the new data and replaces
completely by the new prior specified in Eq. 38. By this way, the
power prior provides a way to balance the old knowledge (learned
from past data) and the new knowledge (just learned from C of the
current step). The balancing constant q needs being chosen manu-
ally. Masegosa et al. [3] make a further progress by considering the
balancing constant q to be a random variable which follows a prior
distribution, allowing q to be adaptive with the data stream. In



Fig. 6. Dirichlet distributions on the 2-simplex with different boosting rates of
natural parameter g ¼ ½4;5;6�.
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contrast, the viewpoint of BPS is to inject human/external knowl-
edge into a model at each time step.

4.3. Keeping prior in BPS

We will show that in BPS with linear boosting functions, infor-
mation from prior is not vanished. In BPS, the information learned
from the data is: ~n1 þ . . .þ ~nb and the total information from prior
is n0 þ ~g1 þ . . .þ ~gb. By evaluating ratio of the norms of these two
kinds of information, we have the following lemma:

Lemma 4.1 (BPS). Assume that the learned information f~nhg
b
h¼1 are i.

i.d samples from a probability distribution with mean �n– 0, and BPS
uses the linear boosting function ~gb ¼ rbn0, where coefficients rb are
lower bounded by some constant c > 0. We have the following
property, with probability 1,
jjn
�
1 þ . . .þ n

�
bjj

jjn0 þ g
�
1 þ . . .þ g�bjj

6 jj n
�
jj

cjjn0jj
as b! þ1; ð40Þ

suggesting that as b increases, the prior information
n0 þ ~g1 þ . . .þ ~gb is not vanished in comparison with the learned
information ~n1 þ . . .þ ~nb from data.
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Proof. Using the law of large numbers, we have:

Pr lim
b!þ1

~n1 þ . . .þ ~nb
b

¼ �n

 !
¼ 1;

and because jjn0jj is a constant:

Pr lim
b!þ1

jj~n1 þ . . .þ ~nbjj
bcjjn0jj

¼ jj
�njj

cjjn0jj

 !
¼ 1:

Note that ~gb ¼ rbn0 and rb P c for any b, we have:

Pr lim
b!þ1

jj~n1 þ . . .þ ~nbjj
jjn0 þ ~g1 þ . . .þ ~gbjj 6

jj�njj
cjjn0jj

 !
¼ 1:

This lemma shows that, in BPS, the information from external
prior is not overwhelmed by the information learned from data.
Hence, we can remain the valuable knowledge.
4.4. Balancing between learned information and boosting prior

BPS aims to inject the information from the initial prior into the
new data. In Eq. 34, the learned information from the new data ~nb is
independent of n0 and n̂b0. Because ~nb depends on the amount of
data, overusing the boosting prior may leads to underfitting
because it dominates the learned information. To tackle this prob-
lem, we propose an information scale ratio between jj ~nbjj and jjn̂b0jj:

jjn̂b0jj ¼ sjj ~nbjj ð41Þ
where s is a scale parameter. The purpose of this balancing is to let
the information from the prior knowledge account for a certain
ratio in the learned information of the new data.

Suppose we use the linear boosting function in Eq. 35. Note that
n0  g and n̂b0  ĝb, combining with Eq. 41 leads to the boosting
rate:

rb ¼ s
jj ~nbjj
jjn0jj

ð42Þ

and the boosting prior:

n̂b0 ¼ s
jj ~nbjj
jjn0jj

:n0 ð43Þ

In practice, at first we compute the learned information ~nb, then
we follow Eq. 43 to get the boosting prior. Finally, we update the
parameter using Eq. 34. In BPS; s is a hyperparameter, we can
choose a good value for s by grid search in the range ½0;1�.

Note that with scale factor s ¼ 0;BPS turns out to be SVB with-
out using boosting prior.

4.5. Discussion about BPS

BPS is a generalization of SVB with the ability to appropriately
use prior knowledge. While a self-contained model to cover the
data with high performance is not available and we often spend
a high cost on deriving a good model, BPS is a considerable solu-
tion. In cases of having a good prior knowledge, BPS is a straightfor-
ward way with low cost to enhance a Bayesian model and reduce
some bad effects from extreme sparsity and noise. One can also
interpret that BPS uses external knowledge to regularize a model
when dealing with ill-posed problems, e.g., sparsity and noise.
We observe that external/human knowledge is available in various
forms and easily accessible, including pre-trained machine learn-
ing models [22,37,38], ontology, Wikipedia, Zipf’s law, Wordnet,
etc. Furthermore, we believe that the idea of BPS can be easily
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employed in other streaming frameworks [2,19,3,5]. Those obser-
vations suggest the solution from BPS is significant.

Nonetheless, BPS requires a good prior knowledge to improve a
model, otherwise, it may worsen the model. This consequence is
explicitly shown in a case study of Section 5. In some situations,
obtaining prior knowledge with good quality may be hard, and
therefore BPS has some limitations.
5. Case studies

In this section, at first we conduct a case study with synthetic
streaming data and then we build 3 other case studies with 3 mod-
els and different type of prior knowledge to evaluate the perfor-
mance of BPS framework in comparison with SVB. The streaming
data is simulated by dividing a dataset into continuous collections.
For selecting models’ hyperparameters, we do a grid search around
their recommended settings in its original papers. For BPS, we first
do a grid search to find a good range of scale factor s then evaluate
how BPS responses to the change of s. We also do experiments on
the sensitivity of BPS over different values of the batchsize param-
eter. Each experiment is run five times with random initialization
of variables. The final result is the mean value of all runs. For sim-
plicity, we only plot standard deviation of experiments in several
cases. In all cases, higher values are better.
Fig. 7. Impact of prior knowledge quality. ’True’ is the correct value (0.2) of model
parameter h in the BB model that generates the training data. Some guesses {0.1,
0.2, 0.3, 0.4, 0.5} about the true h are used as priors for SVB and BPS. E½h� shows how
well a method recovers h as learning from more data.
5.1. Case study 1: streaming with synthetic data

In this case study, we examine the performance of BPS in com-
parison with SVB in a synthetic streaming data, and investigate the
impacts of the quality of prior knowledge and noise.

Consider a model where the binary data are all generated from a
Bernoulli distribution: x � BernoulliðhÞ. We fix h ¼ 0:2 and generate
a sequence of 300 data points.

Suppose that we use the following misspecified model to work

with those data: h ¼ Betaðgc;gdÞ; x � BernoulliðhÞ. Note E½h� ¼ gc

gcþgd,

where gc and gd are hyperparameters.
This model is denoted as BB. The learning involves the following

posterior: pðhjgc;gd;CÞ. Denote nb and kb be the number of data
points and the number of 1’s in the data Cb of minibatch b, respec-
tively. Using variational inference with the variational distribution
qðhÞ � Betaðkc; kdÞ, a lower bound of the log likelihood of the data
is:

L ¼ Eq logpðh;Cjgc;gdÞ � Eq log q

Similar to the learning method of LDA, by taking the partial
derivative of L with respect to kc and kd and setting them to zero,
we have Algorithm 3 and Algorithm 4 for learning BB by SVB and
BPS respectively.
2 Note that the contaminated x turns out to be a trial from Bernoulliðhþ d� 2hdÞ.
5.1.1. Impact of prior knowledge quality
We evaluate the impact of prior knowledge quality into the per-

formance of BPS by setting different levels of prior knowledge. The
knowledge to be used in BPS is encoded in ðgc;gdÞ. Note that gc

gcþgd

being closer to h ¼ 0:2 means that the prior quality is better.
Settings: The batchsize is fixed to 20, and the scale factor of BPS

is s ¼ 0:3.
Evaluation: We compare the expectation of h in the learned

model with its true value. The closer h is to the true value, the bet-
ter the model is.

Prior in use: We investigate different priors ðgc;gdÞ so that

ĥ ¼ gc

gcþgd 2 f0:5;0:4;0:3;0:2;0:1g. The closer ĥ to the truth h ¼ 0:2,

the better the quality of prior knowledge.
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Result: The result is illustrated in Fig. 7a for SVB and in Fig. 7b
for BPS. It shows that SVB has less impact of prior knowledge while
BPS has a strong dependence with the quality of prior knowledge. A
good prior knowledge will significantly enhance the quality of
model. In contrast, a poor quality of prior knowledge misleads
the model, and even makes it poorer than SVB. Therefore, the qual-
ity of prior knowledge has a real impact to BPS, and BPS only keeps
its good performance in case of having a good prior.

5.1.2. Learning from noisy data
Suppose that some random noises change the results of Ber-

noulli trials. In more details, the noisy generative process for each
data point is:

� Sample data point x � BernoulliðhÞ
� Change the value of x with a noise BernoulliðdÞ.2

With the same settings as sub-Section 5.1.1, but only using the
good prior with the expectation E½h� ¼ 0:2 and the noisy probability
d 2{0.01, 0.05, 0.1, 0.2, 0,3}, we have the results in Fig. 8a for SVB
and in Fig. 8b for BPS.

It is clear that in noisy data, BPS with a good prior knowledge
will drive the model into its true value. Meanwhile, SVB is
impacted by wrong information from noise leading to a weak per-
formance. In other words, BPS has ability to help the model cope
with noisy information when providing a good prior knowledge.



Fig. 8. Impact of noise. ‘True’ is the correct value of model parameter h in the BB
model that generates the training data. {0.01, 0.05, 0,1, 0.2, 0.3} show the level of
noise that contaminates the training data. E½h� shows how well a method recovers h
as learning from more noisy data.

3 The full list can be found in [39].
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Algorithm 3 SVB-BB

Input: Prior gc;gd, sequence of mini-batch C1;C2; . . .

Output: a sequence kcb; k
d
b

Initialize: kc0  gc , kd0  gd

for each mini-batch Cb in C1; C2; . . . do
~kcb  kb
~kcb  nb � kb
kcb  kcb�1 þ ~kdb
kdb  kdb�1 þ ~kdb

end for

Algorithm 4 BPS-BB

Input: Prior gc;gd, sequence of mini-batch C1;C2; . . .

Output: a sequence kcb; k
d
b

Initialize: kc0  gc , kd0  gd

for each mini-batch Cb in C1; C2; . . . do
~kcb  f bðgcÞ þ kb
~kcb  f bðgdÞ þ nb � kb
kcb  kcb�1 þ ~kdb
kdb  kdb�1 þ ~kdb

end for
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5.2. Case study 2: streaming sentiment analysis

Sentiment analysis is an interesting area in text mining, with
the aim to extract opinions from text data. One of the basic tasks
in sentiment analysis is sentiment classification, in which opinions
often need to be classified into positive, negative or neutral. How-
ever, a document can contains many aspects with different senti-
ments. Yo and Oh [17] proposed the Aspect and Sentiment
Unification model (ASUM) for modeling the sentiments about
aspects in an unsupervised manner. The graphical model of ASUM
is presented in Fig. 9.

ASUM assumes that a corpus is talking about E sentiments and T
aspects, represented by many Dirichlet distributions bez � DirðgeÞ,
where e 2 f1; . . . ; Eg is the index of a sentiment and z 2 f1; . . . ; Tg
is the index of an aspect. In each document, containing M sen-
tences, the distribution of sentiments is pd � DirðcÞ; and for each
sentiment e, the aspect distribution is defined by hde � DirðaÞ. We
assume the mth sentence of length N is generated as follow: first
choose the sentiment by a multinomial distribution em � MulðpdÞ,
then generate the corresponding aspect zm � Mulðhdem Þ, generate
each word w � Mulðbem ;zm Þ.

Learning algorithm: Given data C, the full posterior of interest
is:

pðb;p; h; e; zjC; c;a;gÞ ð44Þ
The inference procedure infers the local variables p; h; e; z. We

use the method proposed by [39]. The Dirichlet parameters c ¼ 1
and a ¼ 1 are fixed so that the posterior in Eq. 44 is a convex func-
tion with respect to p and h and can be efficiently inferred by
Frank-Wolfe algorithm [40]. e and z can be directly approximated
through pðejp; h;w; b and pðzjp; h;w; bÞ. The details of this proce-
dure is presented in Algorithm 12 of the Appendix.

To update the global variable b, let qðbjkÞ be the variational dis-
tribution of pðbjgÞ. Using variational inference, we derive the two
streaming learning algorithms for ASUM, SVB in Algorithm 5 and
BPS in Algorithm 6.

Prior knowledge in use: We use the same way as in [17,39].
We use a list of positive (e.g., ‘‘good”, ‘‘excellent”) and negative
words (e.g., ‘‘bad”, ‘‘poor”) as prior knowledge, often called seed
words.3 be contains information about the distribution of words
over each sentiment. So for the seed words, the priors are set with
higher value than other words. By this way, we form a human
prior of sentiment over words: ge. Therefore, the prior encoded
in BPS is

f̂ bðgÞ ¼ s
jj~kbjj
jjgjj g:

We set gej ¼ 0:01 for any sentiment seed word j and otherwise
gei ¼ 0:0001 for any other word i. ge is used for both SVB at the first
learning step and BPS.

Evaluation metric: The accuracy of sentiment classification is
used to evaluate the quality.

Experimental setups: We use 4 datasets (Electronics, Yelp,
Kitchen & Housewares, and Music)4 with some statistics shown in
Table 3.

To investigate the effect of scale ratio s, we fix batch-size to
1000 for the three first datasets, and to 2000 for Music as it’s size
is large. We test s 2 f0:2;0:4;0:6;1:0g. To study the effect of batch-
size, we fix the scale ratio to s ¼ 0:4 and change batch-size in
f500;1500;2000g for the three small corpora, and in
f4000;6000;8000g for Music. We have E ¼ 2 to represent
4 http://www.cs.jhu.edu/~mdredze/datasets/sentiment/



Fig. 9. The graphical representation of ASUM.
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positive/negative sentiments, and fix T ¼ 50 in all experiments for
ASUM.5

Algorithm 5 SVB-ASUM

Input: Prior g;a; c, sequence of mini-batch C1;C2; . . .

Output: a sequence kðlÞ1 ; kðlÞ2 ; . . .

Initialize: k0  g
for each mini-batch C in C1;C2; . . . do
Inference:
for each document d in C do
Infer local variables ðh;p; e; zÞ

end for
Update:

kb
�

etj ¼
P

d2Cb

P
m
P

ne
�
dmez
�
dmtdj

kb  kb�1 þ ~kb
bb / kb

end for

Algorithm 6 BPS-ASUM

Input: Prior g;a; c, sequence of mini-batch C1;C2; . . .

Output: a sequence kðlÞ1 ; kðlÞ2 ; . . .

Initialize: k0  g
for each mini-batch C in C1;C2; . . . do
Inference:
for each document d in C do
Infer local variables ðh;p; e; zÞ

end for
Update:

kb
�

etj ¼
P

d2Cb

P
m
P

ne
�
dmez
�
dmtdj

kb  kb�1 þ ~kb þ f̂ bðgÞ
bb / kb

end for
5 We found the same conclusion as investigating with different values of T. Hence
for ease of discussion, we just report the results with T ¼ 50.
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Results:
The effect of prior: Fig. 10 shows the results of BPS with different

scale ratios, in comparison with SVB. Higher value of the scale ratio
means we are using more prior knowledge.

It is clear that the results of BPS are better than those of SVB
even with different values for scale ratio. In addition, there are rises
in the accuracy of BPS when the scale ratio increases. It means that
the prior is meaningful, so that emphasizing it will enhance the
quality of the learning process. Moreover, Fig. 10b and Fig. 10d give
illustrations that ignoring the external prior in SVB may lead to a
considerable decrease in accuracy, while by maintaining the prior,
BPS improves the accuracy of the model. Those subfigures also sug-
gest that by boosting the good prior, BPS can perform better by a
large magin than SVB.

Fig. 11 summarizes the results when changing the batch-size.
We observe that BPS works well with different settings of batch-
size. In all 4 datasets, the accuracy of BPS with different batch-
sizes is higher than that of SVB. The performance of BPS in Yelp
and Music is particularly good, and significantly better than that
of SVB. The improvement with a large margin in Music suggests
that the prior is really meaningful for sentiment analysis. Losing
such a good prior knowledge causes to quickly reduce the discrim-
inative ability of SVB.

Algorithm 7 SVB-LDA

Input: Prior g, hyper-parameter a, sequence of minibatches
C1;C2; . . .

Output: k
Initialize: k0  g
for each minibatch C in C1;C2; . . . do
Inference:
for each document d in C do
Infer local variables /; c

end for
Update:
~kb  

P
d2C/dvkndv

kb  kb�1 þ ~kb
bb / kb

end for

Algorithm 8 BPS-LDA

Input: Prior g, hyper-parameter a, sequence of minibatches
C1;C2; . . .

Output: k
Initialize: k0  g
for each minibatch C in C1;C2; . . . do
Inference:
for each document d in C do
Infer local variables /; c

end for
Update:
~kb  

P
d2C/dvkndv

kb  kb�1 þ ~kb þ f̂ bðgÞ
bb / kb

end for



Table 3
Datasets for evaluating ASUM. ld denotes the average number of words per review. ls denotes the average number of words per sentence.

Dataset Reviews Positive reviews Negative reviews ld ls

Electronics 23,009 17,961 5,048 38.6 6.1
Yelp restaurant 20,708 17,457 3,251 59.7 5.7
Kitchen & Housewares 19,856 15,737 4,119 31.9 5.8
Music 136,000 110,160 25,840 57.2 7.1
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5.3. Case study 3: streaming learning for LDA

In this case study, we evaluate BPS’s performance with the LDA
model presented in Section 3.2.

Streaming learning algorithm: We present more detailed ver-
sions of the learning algorithms for LDA than in Section 3.2. The
posterior of the latent variables given a corpus C is: pðb; h; zjC;a;gÞ.

We inherit the learning algorithm for LDA in Section 2.3 with
the inference procedure for the local variables as in Algorithm 1.
After applying BPS and SVB framework, we have two streaming
learning algorithms for LDA in Algorithm 7 and 8. Note that Algo-
rithm 7 is the same as the SSU algorithm in [1]. The only difference

between the two algorithms is f̂ bðgÞ.
Prior knowledge in use: Relating to the distribution of word in

natural language, Zipf’s law [27,28] gives us an interesting prop-
erty that the frequencies of words in a specific language followed
a power-law distribution of the form: pðwÞ / r�lw , in which pðwÞ is
the proportion of wordw in the language. rw is the rank of the word
in the descending sorted frequencies. This means that the most fre-
quency word has rank r ¼ 1. Parameter l depends on the specific
language. We use Zipf’s law as the prior knowledge in BPS as
follows:
gw / r�lw : ð45Þ
Evaluation metric: We use log predictive probability [1] to

evaluate the predictive capacity of the learned models. A testing
corpus Ch is taken out from data. Each document of this test corpus
is split into 2 parts: dtest and dobserved (with a ratio of 1 : 4 in this
experiment). Suppose that the global parameters are given, the
log predictive probability (LPP) is defined by:
LPP ¼

X
d2Ch

log pðdtest jC;dobservedÞX
d2Ch

jdtest j �

X
d2Ch

X
w2dtest

log
XK
k¼1

Eq½hdk�Eq½bkw�X
d2Ch

jdtestj

Experimental setups: We use 3 datasets for evaluation: New
York Times from the UCI Machine learning Repository6, Yahoo
and Twitter from [10]. Some statistics are presented in Table 4. Note
that Yahoo and Twitter are two corpora of extremely short text,
while New York Times is long text. The number of topics is set
equally with K ¼ 100, and the hyperparameter a ¼ 0:01. The prior
g is taken from Eq. 45 with a heuristic parameter l ¼ 1:07 [41] and
the ranking of word’s frequencies is downloaded from top 100,000
most frequently-used English words text,7 only the words appeared
in vocabulary of dataset are used.

For testing the effect of the scale ratio, we fix the batch-size
= 5000 for large corpora and 1000 for New York Times, and change
s 2 f0:02; 0:05;0:08;0:1; 0:2g. With batch-size testing, we fix
s ¼ 0:02 and change batch-size in f500;2000;4000g for New York
Times. With Yahoo and Tweet we fix the scale ratio to s ¼ 0:08
and change the batch-size in f5000;10000;20000g. We choose
6 http://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/
7 https://gist.github.com/h3xx/1976236.
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greater s and batch-size for short text corpora, because in those
cases more information/knowledge should be needed.

The effect of prior: The results in this case study have a slightly
different pattern with that in case study 2, and can be divided into
two groups: long text (New York Times), and short text (Yahoo and
Twitter). In general, a higher weight of the prior leads to worse per-
formance of BPS in long text, however gives significant improve-
ment for short text (Fig. 12).

In the experiments for testing boosting scale with the long text
group, the smallest value of scale ratio for BPS in the experiments
s ¼ 0:02 gives the highest quality of the model and better than in
SVB. However, when increasing the boosting scale, the predictive
capacity of LDA using BPS may be lower than using SVB. In con-
trast, the performance of BPS for the short text increases as
increasing the boosting scale and gets the highest quality with
s ¼ 0:2. The better performance of BPS over SVB is very clear
and often with a large margin. The same behavior of BPS is
reported in Fig. 13 when changing the batch-size and fixing the
scale ratio with a suitable value (0.02 for short text, and 0.08
for long text).

We can explain such a behavior of BPS as follows. The short text
often contains little information, and poses severe challenges for
SVB. Further even a large number of short text could not overcome
those challenges [11]. Therefore, exploiting external knowledge
would be necessary in order to learn a good predictive model from
short text. BPS seems to exploit considerably well the knowledge
from Zipf’s law, represented in (45), to surpass SVB with a large
margin in Yahoo and Twitter. On the other hand, the long text itself
contains much information and hence helps SVB perform well.
Overusing prior knowledge with a unsuitable scale factor will lead
to overwhelm the information from data. As a result, the role of
prior is not very significant in this case.

5.4. Case study 4: streaming text classification

To solve text classification problem, multi-view topic model
ðMviewLDAÞ [23] was introduced. The idea of MviewLDA is that
each document of D documents belongs to one of J classes with
probability contributed by a multinominal distribution

v � MulðpÞ. Each class j contains K local topics fbðlÞjk g
K

k¼1 with the

distribution over topics hðlÞ which are sampled from the Dirichlet

distribution DirðaðlÞj Þ. Besides, they assume that there exists R glo-

bal topics fbðgÞr g
R

r¼1 that are shared by all classes. The binary vari-
able d decides when a word belongs to global or local topics. The
graphical representation of MviewLDA is presented in Fig. 14.

The generative process of MviewLDA is as follows:

� Generate topic distribution:

– For local topics: bðlÞ � DirichletðgðlÞÞ
– For global topics: bðgÞ � DirichletðgðgÞÞ

� Generate a document d of length Nd:

– Draw a class: v � MulðpÞ
– Draw local topic proportion: hðlÞv � DirðaðlÞv Þ
– Draw global topic proportion: hðgÞ � DirðaðgÞÞ
– Draw Bernoulli parameter x � BetaðcÞ

https://gist.github.com/h3xx/1976236
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– For each word w of document d:
⁄ Draw a binary indicator d � BernoulliðxÞ
⁄ If d ¼ 1, word w belongs to local topic:
Fig. 10. Streaming ASUM results with different scale ratios. The x-axis shows the
amount of data received in the streaming learning process.
� Draw a local topic zðlÞv � MulðhðlÞv Þ
� Draw word w � Mulðb

zðlÞv
Þ

⁄ If d ¼ 0, word w belongs to global topic:
� Draw a global topic: zðgÞ � MulðhðgÞÞ
� Draw word w � MulðbzðgÞ Þ

Let each local topic being contributed by a Dirichlet prior gðlÞj .
Note that local topics within each class contain feature words of
its class. Therefore, if we set the weighted value of the feature
words larger than the others and use it as a prior, we will provide
more information into the model to differentiate classes. Such a
technique can increase the quality of learning process.

Algorithm 9 SVB-MviewLDA

Input: Prior g, sequence of minibatches C1;C2; . . .

Output: k
Initialize k0  g
for each minibatch C in C1;C2; . . . do
Inference:
for each document d in C do
Infer local variables ðf;/; sÞ

end for
Update:
~kðlÞb  

P
d2C
PNd

i¼1I½vd¼j�sdi/
ðlÞ
d;i;j;kwd;i;j

kb  kb�1 þ ~kb
bb / kb

end for

Algorithm 10 BPS-MviewLDA

Input: Prior g, sequence of minibatches C1;C2; . . .

Output: k
Initialize k0  g
for each minibatch C in C1;C2; . . . do
Inference:
for each document d in C do
Infer local variables ðf;/; sÞ

end for
Update:
~kðlÞb  

P
d2C
PNd

i¼1I½vd¼j�sdi/
ðlÞ
d;i;j;kwd;i;j

kb  kb�1 þ ~kb þ f bðgÞ
bb / kb

end for

Learning algorithm: Given corpus C ¼ fCig, in case of super-
vised learning with known class label v, the posterior of interest is:

pðx; hðlÞ; hðgÞ; d; z;bðlÞ; bðgÞjv; C;gðlÞ;gðgÞ;aðlÞ;aðgÞ; c;pÞ: ð46Þ
The learning algorithm in [23] is Gibbs sampling and designed

for batch learning. In this case study, we use variational inference
(as in [42]) and modify to streaming classification learning. The
variational distribution is:

qðx; hðlÞ; hðgÞ; d; zðlÞ; zðgÞ;bðlÞ; bðgÞÞ
¼ qðxjmÞqðhðlÞjlðlÞÞqðhðgÞjlðgÞÞqðdjsÞqðzðlÞj/ðlÞÞ
qðzðgÞj/ðgÞÞqðbðlÞjkðlÞÞqðbðgÞjkðgÞÞ
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Fig. 11. Streaming ASUM results with different batch-sizes.

Fig. 12. Streaming LDA results with different scale ratios.

Table 4
Datasets for evaluation of LDA. ld denotes the average number of words per
document.

Dataset Vocabulary size Training size Testing size ld

New York Times 102,660 200,000 10,000 228.8
Yahoo 24,419 500,000 10,000 4.7
Twitter 89,474 1,500,000 10,000 9.8

D.A. Nguyen V.L. Ngo, K.A. Nguyen et al. Neurocomputing 424 (2021) 143–159
where /ðlÞ and /ðgÞ are multinomial parameters, m is Beta parameter,
s is Bernouli parameter, /ðlÞ;/ðgÞ; kðlÞ; kðgÞ are Dirichlet parameters.

We denote the indicator Ijvd ¼ 1 when document d belongs to class

j and Ijvd ¼ 0 otherwise. Similarly, Ivwd;i
¼ 1 if the ith word of docu-

ment d is v. The detail of the inference procedure are shown in Algo-
rithm 11 of the Appendix.

Because we aim to keep the information from prior gðlÞ of the
local topics, we only apply BPS to bðlÞ. Adopting SVB and BPS with
155
the variational inference leads to 2 streaming versions for updating
kðlÞ in Algorithm 9 and Algorithm 10.



Fig. 13. Streaming LDA with different batch-sizes.

Fig. 14. Graphical representation for MviewLDA.

Table 5
Dataset for text classification.

Dataset Num of classes Vocabulary size Training size Testing size

News20 20 62,061 16,000 3,900
Cade12 12 193,997 27,322 4000

Fig. 15. Streaming MviewLDA result with different scale ratios.
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Prior knowledge in use: Borrowing the idea from [30], we
extract the feature words of each class and use them as the prior
knowledge. At first, we calculate TF.IDF for the words in each class
then select top 5000 words with highest TF.IDF values as seed
words. The seed words of class j are then used to initialize prior

gðlÞj by assigning a value v ¼ 0:5. The other values are set to a small
value � ¼ 0:01.

Evaluation metric: The classification accuracy is used in this
evaluation.

Experimental setups: We use 2 labeled datasets (Cade 12 and
News20).8 with some statistics described in Table 5.
8 http://ana.cachopo.org/datasets-for-single-label-text-categorization
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For News20, we set the number K ¼ 10 of topics in each local
class and the number R ¼ 8 of global topics. For Cade 12, we use
K ¼ 15 and R ¼ 4 because of being larger in size than News20.
The other Dirichlet prior parameters are set equal to 0.01 as case
study 3 on LDA. We take SVM into account as another baseline
to evaluate the quality of classification.

For testing scale ratio, we set batchsize as 1000 and change
scale factor s 2 f0:2; 0:4;0:6;0:8;1:0g. For testing batchsize, we fix
scale factor s ¼ 0:4 and change batchsize in f1000;1500;2000g.

Results: The results are summarized in Fig. 15 and Fig. 16. The
results of BPS are comparable with those of SVB.

However, we can see that the accuracy of BPS tend to be higher
than SVB in the latter minibatches, and significantly better in
News20 dataset. Again, this pattern reflects that maintaining the



Fig. 16. Streaming MviewLDA result with different batch-sizes.
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prior knowledge is valuable in streaming learning. SVB will lose
prior information while BPS still keep it, therefore, BPS is able to
produce a better result than SVB.

From these experiments, we can see that the appropriate values
of the scale ratio depend on the quality of the prior knowledge pro-
vided into models. Doing a pre-search to find a good range value of
scale ratio will help to improve the result of the learned models.
The result of BPS is better in comparison with SVB in most cases
with the same batchsize settings.
6. Conclusion

In this paper, we discussed the problem of incorporating exter-
nal knowledge as the prior for streaming Bayesian learning. We
showed that SVB easily forgets prior knowledge as more data come.
This may be problematic when we want to exploit valuable knowl-
edge to deal with the challanges of sparsity and noise. We then
proposed BPS to boost the role of the prior knowledge. Within
BPS, the valuable information from prior is maintained through
learning process, and hence BPS easily overcomes the vanishing
prior problem. BPS provides a simple but effective solution for
practice, and its idea can be easily employed in other streaming
methods.
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Appendix A

This section presents the details of the inference of local variables
in ASUM (Algorithm 12) and MviewLDA (Algorithm 11).

Algorithm 11 Inference of local variables in ASUM

Input: Prior g;a ¼ 1; c ¼ 1, global variable b, document
d ¼ fw1; . . . ;wmg with M sentences

Output: Local variables: h;p; ~ed;~zd
Randomly initialize hd;pd.
repeat
Infer hd by using Frank-Wolfe algorithm [40] to maximize

f ðhdÞ ¼
XM
m¼1

log
XE
e¼1

XT
t¼1
ðpdehdet

YN
n¼1

betwmn
Þ

Infer pd by using Frank-Wolfe algorithm to maximize

f ðpdÞ ¼
XM
m¼1

log
XE
e¼1

XT
t¼1
ðpdehdet

YN
n¼1

betwmn
Þ

until convergence
Estimate ~ed, ~zd for each sentence m:

~edme ¼ Pðem ¼ ejpd; hd;wm;/Þ /
XT
t¼1

pdehdet
YN
n¼1

betwmn

~zdmt ¼ Pðzm ¼ tjpd; hd;wm;/Þ /
XE
e¼1

pdehdet
YN
n¼1

betwmn

Algorithm 12 Inference of local variables in MviewLDA

Input: Global variable gðlÞ, gðgÞ, document d and label vd

Output: m;l; s;/
Randomly initialize m;l; s;/.
repeat

m1 ¼ c1 þ
XN
i¼1

si; m2 ¼ c2 þ
XN
i¼1
ð1� siÞ

lðlÞjk ¼ Ijvda
ðlÞ
jk þ

XN
i¼1

siIjvd/
ðlÞ
i;j;k þ 1� Ijvd ;l

ðgÞ
k ¼ aðgÞk þ

XN
i¼1
ð1� siÞ/ðgÞik

si ¼ f1þ expf�Wðc1Þ þWðc2Þ �
XJ

j¼1

XK
k¼1

Ijvd/
ðlÞ
i;j;kðWðlðlÞjk Þ �Wð

XK
n¼1

lðlÞjn ÞÞgg

�
XJ

j¼1

XK
k¼1

XV
v¼1

Ijvd/
ðlÞ
i;j;kI

v
wi
ðWðgðlÞjkv Þ �Wð

XV
v¼1

gðlÞjkv ÞÞ

þ
XK
k¼1

/ðgÞik ðWðlðgÞk Þ �Wð
XK
i¼1

lðgÞj ÞÞ þ
XK
k¼1

XV
v¼1

/ðgÞik Ivwi
ðWðgðgÞkv Þ �Wð

XV
v¼1

gðgÞkv ÞÞ
�1

/ðlÞi;j;k / expfIjvdsiðWðl
ðlÞ
jk Þ �Wð

XK
n¼1

lðlÞj;nÞ þ
XV
v¼1

Ivwi
ðWðgðlÞjkv Þ �Wð

XV
v¼1

gðlÞjkv ÞÞg

/ðgÞik / expfð1� siÞðWðlðgÞk Þ �Wð
XK
j¼1

lðgÞj Þ þ
XV
v¼1

Ivwi
ðWðgðgÞkv Þ �Wð

XV
v¼1

gðgÞkv ÞÞg

until convergence
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