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We study the problem of evaluating the goodness of a kernel matrix for a classification task. As kernel
matrix evaluation is usually used in other expensive procedures like feature and model selections, the
goodness measure must be calculated efficiently. Most previous approaches are not efficient except for
kernel target alignment (KTA) that can be calculated in O(n2) time complexity. Although KTA is widely
used, we show that it has some serious drawbacks. We propose an efficient surrogate measure to evalu-
ate the goodness of a kernel matrix based on the data distributions of classes in the feature space. The
measure not only overcomes the limitations of KTA but also possesses other properties like invariance,
efficiency and an error bound guarantee. Comparative experiments show that the measure is a good
indication of the goodness of a kernel matrix.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Kernel methods, such as support vector machines (SVMs), Gaus-
sian processes, etc., have delivered extremely high performance in
a wide variety of supervised and nonsupervised learning tasks [1].
The key to success is that kernel methods can be modularized into
two modules: the first is to map data into a (usually higher dimen-
sional) feature space; and the second is to use a linear algorithm in
the feature space, which is efficient and has theoretical guarantees
[2]. The process of kernelization of linear algorithms makes them
run in a time complexity that is independent of the dimension of the
input space. It allows to introduce nonlinearity into the algorithms
implicitly by the kernel maps. It also allows inputs to be of arbitrary
types provided that kernels can be constructed [1--4].

While many linear algorithms can be kernelized, the major effort
in kernel methods is put into designing good mappings defined by
kernel functions �:

� : X → H. (1)

X is the original data space and H is the feature space, which is
usually chosen to be a reproducing kernel Hilbert space (RKHS) [5].
The reasons are that RKHS is small enough compared to Hilbert space
so that it does not contain many nonsmooth functions and it is large
enough to contain the optimal function. While H may be a many-
dimensional space, the algorithm takes advantage of the kernel trick
to operate solely on the kernel matrix induced from data:

K = {〈�(xi),�(xj)〉}i=1...n,j=1...n. (2)
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The goodness of a kernel function can only be seen from the goodness
of the kernel matrix K; therefore, measuring the goodness of K is of
primary interest in various contexts.

There are many ways to measure the goodness of a kernel matrix
(kernel function) for a classification task, differently reflecting the
expected quality of the kernel function. Commonly used measures
are regularized risk [1], negative log-posterior [6] and hyperkernels
[7]. These measures do not give a specific value, but only assert cer-
tain criteria in form of regularities in certain spaces, for example,
RKHS or hyper-RKHS. All of these kernel measures require an opti-
mization procedure for evaluation. Therefore, they are prohibitively
expensive to be incorporated into other expensive procedures like
model and feature selections. Other techniques like cross validation,
leave-one-out estimators or radius-margin bound can also be consid-
ered as expected quality functionals. Like the previously mentioned
works, they require the whole learning process.

To be used in feature and model selection processes, goodness
measures of kernel matrices must be efficiently calculated. Simple
formula is an additional merit as one can design kernels taking a
goodness measure as an objective function. The most commonly
used efficient kernel goodness measure is kernel target alignment
(KTA) [8]. Due to its simplicity and efficiency, KTA has been used in
many works for two central problems in kernel methods: designing
kernels and learning kernels from data.

In this work, we first analyze KTA to show that having a high
KTA is only a sufficient condition to be a good kernel matrix, but not
a necessary condition. It is possible for a kernel matrix to have a very
good performance even though its KTA is still low. We then propose
an efficient surrogate measure based on the data distributions in
the feature space to relax the strict conditions imposed by KTA. The
measure is invariant to linear operators in the feature space and
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retains several properties of KTA, such as efficiency and an error
bound guarantee. Themeasure is closely related to some other works
on worst-case error bounds and distance metric learning. We show
experimentally that the new measure is more closely correlated to
the goodness of a kernel matrix, and conclude finally with some
future works.

2. Kernel target alignment

KTA is used to measure how well a kernel matrix aligns to a
target (or another kernel) [8]. Alignment to the target is defined as
the (normalized) Frobenius inner product between the kernel matrix
and the covariance matrix of the target vector. It is interpreted as
cosine distance between these two bi-dimensional vectors. We first
introduce some notations.

Denote the training example set as {xi}i=1...n ⊂ X with the corre-
sponding target vector y = {y1|y2| · · · |yn}T ∈ {−1,1}n. Suppose that
y1 = · · · = yn+ = 1 and yn++1 = · · · = yn++n− = −1; n+ examples be-
long to class 1, n− examples belong to class −1, n+ + n− = n. Under
a feature map �, the kernel matrix is defined as

K = {kij = 〈�(xi),�(xj)〉}i,j=1...n. (3)

Recall that Frobenius inner product is defined as

〈K, K∗〉F =
n∑

i=1

n∑
j=1

kijk
∗
ij . (4)

The target matrix is defined to be y · yT. KTA of K is defined as the
normalized Frobenius inner product:

A(K, y) = 〈K, y · yT〉F√
〈K, K〉F 〈y · yT, y · yT〉F

. (5)

There are many advantageous properties of KTA that make it a pop-
ular choice for measuring the goodness of fit of a kernel matrix to a
supervised task. It is efficient as its computational time is O(n2) with
a simple formula, allowing it to be an objective function in an op-
timization procedure. It is highly concentrated around its expected
value, namely

P(S|Â(X) − A(y)� �̂)��, (6)

where �̂=C(X)
√
8 ln(2/�)/n, C(X) is nontrivial. This gives a high prob-

ability that an empirical estimate of KTA is close to the true align-
ment value. There is an Parzen window classifier that emits an gen-
eralization error bound of

Â(X) −
√
8
n

ln
(
2
�

)
. (7)

This means that when an alignment is high, one can expect that the
error rate using the kernel must be limited to a certain amount.

Evidently, KTA is used extensively in many kernel design and
learning methods. Most popularly, KTA is directly used as an objec-
tive function to optimize in learning parameters for kernels: weight-
ing of kernels in a multiple kernel learning framework [9]; feature
selection [10]; subspace kernels for feature extraction [11]. It is also
used to adapt kernels in Refs. [8,12], to design kernels with boosting
[13], to learn semantic similarity [14]. It is also extended to regres-
sion problems in Ref. [15].

We claim that having a very high value A(K, y) is only a sufficient
condition, but not a necessary condition, for K to be a good kernel
matrix for a given task specified by the target y. As 0�A(K, y)�1,1

when A(K, y)=1, the two bi-dimensional vectors K and y·yT are linear.
Up to a constant, the optimal alignment happens when kij = yi · yj .
This is equivalent to two conditions:

(1) All examples of the same class are mapped into the same vector
in the feature space (kij = 1 for xi, xj in the same class).

(2) The mapped vectors of different classes in the feature space are
additively inverse (kij = −1 for xi, xj in different classes).

It is a sufficient condition that having a high K, one can expect good
performance, as classes are collapsed into a point in the feature space.
Violating any of the conditions would mean that KTA is penalized.
However, it is not a necessary condition as we analyze below.

The first condition implies that the within-class variance penal-
izes KTA. However, there is a gap between the condition and the
concept of margin in SVMs. Varying data (in the feature space) along
the separating hyperplane will not affect the margin. If data varies
along the perpendicular direction of the separating hyperplane, the
margin can be changed. However, KTA does not take into account
variances in different directions.

The second condition is too strict, not applicable in many cases
because it requires the mapped vectors of different classes to be
additive inverses of each other. Ideally, if the kernel function maps
all examples of a class to one vector in the feature space, the kernel
matrix should be evaluated as optimal. This is the reason why having
high alignment is only a sufficient condition, but not a necessary
condition. One of the effects of this shortcoming was also reported in
Ref. [13]. The following theorem shows the source of this limitation.

Theorem 1. KTA is not invariant under data translation in the feature
space.

Sketch of Proof. Translate data in the feature space, �(xi) �→
�(xi) + �, ∀i = 1 . . . n. This results in KTA to be a function of �.
Therefore, KTA is not translation invariant in the feature space. We
take some examples to show this limitation quantitatively in some
situations. �

Example 1 (The best case). The kernel function � maps all examples
of class 1 into vector �+ ∈ H and all examples of class −1 into
vector �− ∈ H. Assume that �+ · �+ = �− · �− = 1 and �+ · �− = �,
−1��<1. For any �, the kernel matrix K should be evaluated as
optimal, as it is induced from an optimal feature map. However, its
alignment value is

A(K, y) = n2+ + n2− − 2n+n−�√
n2+ + n2− + 2n+n−�2 · n

. (8)

Alignment values of these kernel matrices change as � varies from
1 to −1, and any value in that range can be the alignment value of
a kernel matrix of an optimal feature function. As lim�→1 A(K, y) =
(n+ − n−)2/n2, KTA ranges from (n+ − n−)2/n2 to 1 in this case.

Example 2 (The worst case). The kernel function � maps a half of
the examples of each class into vector �1 ∈ H and the other half into
vector �2 ∈ H. Assume that �1 · �1 = �2 · �2 = 1 and �1 · �2 = �,
−1���1. For any �, the kernel matrix K should be evaluated very

1 In Ref. [8], it is −1�A(K, y). However, both K and y ·yT are positive semidef-
inite. Hence, both K and y · yT lie in the positive semidefinite cone, making the
cosine of the angle and dot product between them nonnegative [16]. The inequality
0�A(K, y) follows.
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low, as it is induced from the worst kernel function, which fuses the
two classes together and has no generalization ability. However, its
alignment value is

A(K, y) = (n+ − n−)2 · (1 + �)/2

n2 ∗
√

(1 + �2)/2
. (9)

As shown above, lim�→1 A(K, y) = (n+ − n−)2/n2, which is the same
limit as the best case. We can see that KTA of this case ranges from
0 to (n+ −n−)2/n2. There is a similar caution in Ref. [17]. As the best
and the worst cases cover the whole range of alignment values, any
other case would coincide with one of them. Therefore, KTA may
mistake any case to be either the best or the worst.

Example 3 (The popular case). Consider the case when a kernel func-
tion maps all examples into an orthant in the feature space, inducing
a kernel matrix with nonnegative entries, i.e. kij �0. In this case

A(K, y)�

√
n2+ + n2−

n
. (10)

Proof can be derived by using the fact that kij �0 and the
Cauchy--Schwarz inequality [18]. Take a special case when n+ = n−,
A(K, y)�1/

√
2. Recall that KTA of a kernel matrix ranges from 0 to

1, and the higher the better. This example means that these types
of kernel functions will have bounded alignment values, no matter
how good the kernel functions are. This is a drawback of KTA. Unfor-
tunately, this type of kernel function is extensively used in practice.
Gaussian kernels [2] and many other kernels defined over discrete
structures [19] or distributions [20], etc. fall into this category.

The above examples show that KTA canmistake any kernel matrix
to be the best or the worst. KTA is always bound to some numbers for
many popular kernel matrices with positive entries (e.g., Gaussian
and many kernels for discrete structures or distributions). KTA will
disadvantage the use of such kernels.

3. Feature space-based kernel matrix evaluation measure

In this section, we introduce a new goodness measure of a kernel
matrix for a given (binary classification) task, named feature space-
based kernel matrix evaluation measure (FSM). This measure should
be computed on the kernel matrix efficiently, and overcome the
limitations of KTA. Our idea is to use the data distributions in the
feature space. Specifically, two factors are taken into account: (1)
the within-class variance in the direction between-class centers; and
(2) the distance between the class centers. These factors are depicted
in Fig. 1. The first factor improves the first condition of KTA, by
allowing data to vary in certain directions. The second factor solves
the problem imposed by the second condition of KTA. Let std be
the total within-class standard deviation (for both classes) in the
direction between-class centers. Denote the center of a class as the
mean of the class data in the feature space: �+ =∑n+

i=1�(xi)/n+ and

�(xi)

�+ �−

Fig. 1. Data spreading in the direction between-class centers.

Fig. 2. Visual description of auxiliary variables on the kernel matrix.

�− = ∑n
i=n++1�(xi)/n−. Concretely, the evaluation measure FSM is

defined to be the ratio of the total within-class standard deviation in
the direction between the class centers to the distance between the class
centers:

FSM(K, y)
def= std

‖�− − �+‖ . (11)

3.1. FSM calculation

We show that the evaluationmeasure FSM can be calculated using
the kernel matrix efficiently with simple formulas. We first calculate
the within-class standard deviation (of both classes) in the direction
between-class centers. Denote e = �− − �+/‖�− − �+‖ as the unit
vector in this direction. The total within-class standard deviation of
two classes in the direction is

std =

√√√√∑n+
i=1〈�(xi) − �+, e〉2

n+ − 1

+

√√√√∑n
i=n++1〈�(xi) − �−, e〉2

n− − 1
. (12)

We calculate the first term in Eq. (12), the total within-class stan-
dard deviation of the class +1 in the direction between �+ and �−,
denoted as std+.

(n+ − 1)std2+ =
n+∑
i=1

〈�(xi) − �+, e〉2

=
∑n+

i=1 〈�(xi) − �+,�− − �+〉2
(�− − �+)2

=
∑n+

i=1 (�(xi)�− + �2+ − �(xi)�+ − �+�−)2

(�− − �+)2
. (13)

We substitute �+ = ∑n+
j=1�(xj)/n+ and �− = ∑n

j=n++1�(xj)/n− into

Eq. (13), and then we define some auxiliary variables as follows (Fig.
2). For i = 1 . . . n+:

• ai = �(xi)�+ = ∑n+
j=1�(xi)�(xj)/n+ = ∑n+

j=1kij/n+,

• bi = �(xi)�− = ∑n
j=n++1�(xi)�(xj)/n− = ∑n

j=n++1kij/n−.

For i = n+ + 1 . . . n:

• ci = �(xi)�+ = ∑n+
j=1�(xi)�(xj)/n+ = ∑n+

j=1kij/n+,

• di = �(xi)�− = ∑n
j=n++1�(xi)�(xj)/n− = ∑n

j=n++1kij/n−.
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Denote

A =
∑n+

i=1ai

n+
,

B =
∑n+

i=1bi

n+
,

C =
∑n

i=n++1ci

n−
,

D =
∑n

n++1di

n−
.

Hence,

A = �+�+,

B = C = �+�−,

D = �−�−.

Therefore,

(�− − �+)2 = A + D − B − C.

Plugging them into Eq. (13), then

(n+ − 1)std2+ =
∑n+

i=1 (bi − ai + A − B)2

A + D − B − C
. (14)

We can use a similar calculation for the second term in Eq. (12):

(n− − 1)std2− =
∑n

i=n++1 (ci − di + D − C)2

A + D − B − C
. (15)

The proposed kernel matrix evaluation measure FSM, as defined in
formula (11), is calculated as

FSM(K, y) = std+ + std−√
A + D − B − C

. (16)

FSM(K, y)�0, and the smaller FSM(K, y) is, the better K is.
One can easily see that ai, bi, ci, di, A, B, C and D can be calcu-

lated all together in O(n2) time complexity (one pass through the
kernel matrix). Therefore, the evaluation measure is also efficiently
calculated in O(n2) time complexity.

3.2. Invariance

There are some properties of FSM(K, y) regarding linear operations
that make it closer to SVMs than KTA is.

Theorem 2. FSM(K, y) is invariant under translation, rotation and scale
in the feature space.

Sketch of Proof. FSM(K, y) is scale invariant owing to its normaliza-
tion factor A + D − B − C. FSM(K, y) is rotation invariant, as it is built
on kij-s, which are rotation invariant. It is translation invariant as
A − B, D − C are subtracted from the numerator. �

The performance of SVMs and other kernel methods is unchanged
under rotation, translation and scale in the feature space. Therefore, it
is reasonable to ask for measures to have these properties. However,
KTA is not translation invariant.

3.3. Error bound

We show that for any kernel matrix, it is possible to obtain a train-
ing error rate, which is bounded by some amount proportionate to
FSM(K, y). This means that a low FSM(K, y) value can guarantee a low

training error rate. In this case, we can expect a low generalization
error rate.

Theorem 3. There exists a separating hyperplane such that its training
error is bounded by:

FSMerr def= FSM(K, y)2

1 + FSM(K, y)2
. (17)

Proof. We use an one-tailed version of Chebyshev's inequality [21].
Consider the data distribution in the direction between-class centers.
For each class, the data distribution has a mean of either �+ or �−,
and the corresponding standard deviation std+ or std−. The following
inequalities can be derived:

P(〈� − �−, −e〉�k · std−|� ∈ class(−))� 1
1 + k2

,

P(〈� − �+, e〉�k · std+|� ∈ class(+))� 1
1 + k2

. (18)

The separating hyperplane, which takes e as its norm vector and
intersects the line segment between �+ and �− at the point h such
that |h − �+|/|h − �−| = std+/std−, has the formula:

f(x) = e · x − e · std−�+ + std+�−
std+ + std−

= 0. (19)

The error rate of this hyperplane for each class is bounded using the
inequalities in Eq. (18) with k=|�−−�+|/(std++std−)=1/FSM(K, y).
Therefore, the total training error rate on both classes is also bounded
by

1
1 + k2

= FSM(K, y)2

1 + FSM(K, y)2
. � (20)

3.4. Discussion

The measure FSM can be interpreted as the ratio of within-class
variance to between-class variance. It indicates how well the two
classes are separated. It is advantageous over KTA because it takes
into account the within-class variance (namely standard derivation)
at a finer scale, and relaxes the strict conditions of KTA by considering
relative positions of classes in the feature space. For the examples
in Section 2, FSM values of the best cases are always ∞, those of
the worst cases are always 0, and for the popular case, there are no
bounds. This measure also has some similarities with other works.

Uneven data problem: Uneven data (a.k.a. imbalanced data prob-
lem [22]) may cause classifiers to perform poorly on the under-
represented class. Therefore, KTA is modified for this situation by
weighting the alignment according to numbers of training examples
of classes, namely 1/n+ and −1/n− [15]. However, by taking (direc-
tional) standard derivation, FSM naturally deals with uneven data
problem in a similar fashion.

Minimax Probability Machine: The minimax probability machine
(MPM) [23] controls misclassification probability in the worst-case
setting. The worst-case misclassification probability is defined to be

min
a

k(a) =
√

aTCov+a +
√

aTCov−a

〈a,�+ − �−〉 , (21)

where Cov+ and Cov− are covariance matrices of the +1 and −1
class, respectively. It is minimized with respect to a using Semidefi-
nite Programming [16]. The worst case is determined by making no
assumption rather than the mean and the covariance matrix of each

class. It is a property of covariance matrices that
√

aTCov+a is the
directional standard deviation of data in the +1 class on the dimen-

sion spanned by a,
√

aTCov+a is the directional standard deviation of
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data in the −1 class. The objective function of MPM is similar to FSM
in the sense that our measure also shows the worst-case misclassi-
fication error. The difference is that the objective of MPM considers
the data spread in all directions (any a) using the covariance matrix,
while FSM takes only the standard derivation in the direction be-
tween the class centers (a = � · (�+ − �−),� ∈ R). That is the reason
why FSM is a lightweight version of the objective of MPM and can
be calculated efficiently. A special case of MPM is when the a, which
minimizes (21), satisfies (a=� · (�+ −�−),� ∈ R), FSM is the optimal
result of MPM.

Class separability measure: The work that can be considered to be
in between MPM and FSM is class separability measure (CSM) [24].
It is similar to the objective function of MPM in the sense that it
considers data variance in all directions. However, being an efficient
measure, it is different that only trace of the covariance matrix is
taken into account:

CSM = c · trace(Cov+) + trace(Cov−)

‖�+ − �−‖2 (22)

for some constant c (after some manipulation of the denominator).
It is different from FSM that data variance in all directions is taken
into account (by using traces). However, variance in all directions are
countable for class separability. For that, CSM is not known to have
any error bound as FSM. One typical case is that when data are mul-
timodal [25], data variance from different clusters is not informative.
Projecting them into the direction between-class centers might be
an option to cancel out this effect. This is another advantage of FSM
over CSM. We will show that CSM is not a reliable quality measure
in the second experiment later.

Distance learning for nearest neighbor: In the context of nearest
neighbor classification, one of the criteria of learning a good distance
function is to transform data such that examples from the same class
are collapsed into one point [26]. Our measure also shows quanti-
tatively how much a class collapses. However, the key difference is
that in their method, the objective is the whole class collapses to one
point, while our measure shows how the whole class collapses to
a hyperplane. This difference explains why their method is applied
to nearest neighbor classification, while our measure is for kernel
methods.

Fisher discriminant analysis: FSM is akin to kernel Fisher discrim-
inant analysis (KFDA) [27] in the sense that they both measure the
ratio of data variance in one direction to data variance of class cen-
ters. While Fisher criterion is defined to be the maximal ratio in all
directions, FSM is the ratio of at projection with other properties as
analyzed above.

4. Experiments

As the purpose of these measures is to predict efficiently how
good a kernel matrix is for a given task using kernel methods, we
compare the measures to the de facto standard of cross validation
error rates of SVMs. We mimicked the model selection process by
choosing different kernels. We monitored the error rates (as base-
lines), KTA and FSM, to see how they reflect the baselines. We used
10-times fivefold stratified cross validations to estimate the error
rates.

To facilitate visual inspection of the results, we instead showed

the following quantities: (a) 1 − KTA, (b) CSMnorm def= CSM/(CSM +
1),2 (c) FSMerr, defined as error bound based on FSM measure in

2 It is noteworthy that CSMnorm is a monotonically increasing function of
CSM, hence ranking using either CSM or CSMnorm give the same result. We do not
take the square of CSM as it contains square terms already.
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error

Fig. 3. Results on synthetic data with different � values.

formula (17), and (d) error, cross validation error rates. The reason
is that all of these quantities range from 0 to 1 and relate to the
expected error rates of the kernel function in some sense. The reason
we chose CSMnorm is that we want to normalize it to make it ranging
from 0 to 1. We showed CSM because it is also an efficient kernel
matrix quality measure. Normalization of CSM is in a similar fashion
as FSMerr to FSM. The smaller their values, the better the kernel. The
first three quantities are expected to be correlated to the last one.

4.1. Synthetic data

We generated synthetic data in R2, and used linear kernels to
simulate different data distributions by different kernels in a feature
space. For each data set parameterized by an angle �, we used two
isotropic Gaussian distributions (fixed standard derivation in all di-
rections) for two classes centered at �+ =(1,0) ∈ R2 for class +1 and
at �− = (cos(�), sin(�)) ∈ R2 for class −1. Each class contains 500
training examples. The standard derivations of the Gaussian distri-
butions are determined to be var+=var−= 1

2 ‖�−−�+‖. This ensures
that for any �, any data set can be images of another after a linear
operation. Therefore, these data sets with linear kernels are equiv-
alent to one data set with different kernel functions. For any �>0,
the problems should have the same level of error rates (or other
measures) when using linear kernels, i.e. linear kernels should be
evaluated at the same level of goodness. We run experiments with
different � values of 30◦, 60◦, 90◦, 120◦, 150◦ and 180◦ in turn. The
results of 1 − KTA, FSMerr and error are shown in Fig. 3.

From Fig. 3, we can observe that error is stable across different
�'s, as we expected. FSMerr is also rather stable, varying similarly to
error. 1−KTA changes dramatically from 0.936 down to 0.395. It can
be concluded that KTA is too sensitive to absolute positions of data
in the feature space. This confirms our claim about the limitations
of KTA, and FSM can solve this problem.

4.2. Benchmark data

We mimicked the model selection process by using surrogate
measures to choose kernel types. We showed the advantage of
our proposed measure over KTA and CSM in real situations by
selecting several popular data sets from the UCI collection for
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Fig. 4. Model comparison with different surrogate measures on UCI data sets. Taking cross validation as baseline, FSM gives a more reliable indicator of good kernels
compared to KTA and CSM.

experiments Data names and experimental results are displayed in
Fig. 4. Data were preprocessed as follows. It was first normalized
to [−1,1]. Classes were grouped to make binary classification prob-
lems. We chose four types of kernel for model selection: linear (de-
noted as Lin) kernels, polynomial (Poly) kernels (degree 3 with scale
1), Gaussian (RBF) kernels (default �), and tan-hyperbolic (Tanh)
kernels (default).3 As described above, we ran cross validations
and displayed the results of different kernels.

3 Default parameter values are set by LIBSVM environment at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

The following conclusions can be observed from the
graphs:

• Both RBF and polynomial kernels give the (approximately) lowest
cross validation error rates in nine out of nine data sets. However,
1−KTA fails to rank any of either RBF or polynomial kernels in six
data sets. Likewise, CSMnorm fails in eight data sets. FSMerr only
fails in one data sets.

• Similarly, either Tanh kernels or linear kernels give the highest
cross validation error rates in all cases. However 1−KTA and CSM-
norm never show them to be the worst options. For this, FSMerr
agrees with cross validation in five data sets.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 1
Model comparison

Data 1 − KTA CSMnorm FSMerr

Australian 1 4 4
Breast-cancer 3 3 2
Diabetes 4 3 1
Fourclass 4 3 1
German 3 3 2
Heart 4 3 1
Ionosphere 4 1 1
Mushrooms 1 4 1
Vehicle 3 4 2

Average 3.00 3.11 1.67

Ranking the best model (in terms of cross validation error rates) using surrogate
measures.

• In case of very low error rates as in breast-cancer and mushrooms
data sets, FSMerr is highly correlated to error rates, but 1 − KTA
and CSMnorm are not.

We ranked the kernels according to 1 − KTA, CSMnorm, FSMerr and
error separately from 1 to 4. We collected the rank of the best kernel
(according to error) for each data set. On average, 1 − KTA ranks the
best kernel at 3.00 (±1.22), CSMnorm ranks at 3.11 (±0.93), FSMerr
ranks it at 1.67 (±1.00). A t-test (at 95% level of confidence) shows
that FSMerr ranks the best kernels smaller than KTA and CSMnorm.
This also confirms the advantage of FSMerr (Table 1).

In summary, we used synthetic and real data sets and compared
measures against the de facto standard of cross validation error
rates. We showed that using our measure correlates the best model
is more closely to the error rates than using KTA and CSM. When
ranking the best kernel according to the error rates, FSM shows a
significantly lower rank, on average. This suggests that our mea-
sure is more reliable. This confirms our analysis of the limitations of
KTA and CSM, and that our measure can overcome these limitations.
It was also observed that there is still a gap between kernel ma-
trix evaluation measures and error rates, as error rates are collected
from many training rounds while measures are calculated with one
pass through the kernel matrices. This is the trade off necessary for
efficiency.

5. Conclusion

The paper shows that KTA, an efficient kernel matrix measure,
which is popular in many contexts, has fundamental limitations,
as it is only a sufficient, not a necessary condition to evaluate the
goodness of a kernel matrix. A new measure is proposed to over-
come those limitations by using data distributions in the feature
space. This new measure follows the conventional wisdom of mea-
suring within-class and between-class spreading (specifically, stan-
dard derivations) in an appropriate way. The measure provides the
same efficiency as KTA, as evaluated in O(n2) time complexity, and
other properties. It also has links with other methods. This measure
reflects better the error rates of SVMs than the ones based on KTA
and CSM do.

The implication of this work is vast. One can take into account
finer data distribution models in the feature space, to improve
the current work. It is an interesting direction to extend this to

multimodal data distributions and to regression problems. Also,
there are a large number of applications of this measure on other
works. We can directly apply this measure (similarly to KTA) to
many feature and model selection problems such as boosting kernel
matrices, multiple kernel learning, feature selection and so on. In
general, having an efficient kernel matrix evaluation, we can lever-
age the work of kernel matrix and kernel function learning, which
is of central interest in kernel methods.
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