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Abstract. Imbalanced data learning has recently begun to receive much
attention from research and industrial communities as traditional ma-
chine learners no longer give satisfactory results. Solutions to the prob-
lem generally attempt to adapt standard learners to the imbalanced data
setting. Basically, higher weights are assigned to small class examples to
avoid their being overshadowed by the large class ones. The difficulty
determining a reasonable weight for each example remains. In this work,
we propose a scheme to weight examples of the small class based solely
on local data distributions. The approach is for categorical data, and a
rule learning algorithm is constructed taking the weighting scheme into
account. Empirical evaluations prove the advantages of this approach.

1 Introduction

It a practical sense, applying standard machine learning methods to real world
tasks when their class distribution is imbalanced is problematic. This is the
case of a data set, in which the number of examples of one class is substantially
smaller than the others. For instance,if one class accounts for only 2% of the total
number of examples in the data set, a classifier can get a high accuracy of 98%
just by assigning all its examples to the large class. However, in such a case, the
classifier completely fails to learn the small class, which is usually of interest. In
practice, researchers have encountered this problem in many domains, including
the detection of fraudulent transactions [I], network intrusion detections [2] and
oil spills in satellite radar images [3].

The reason that standard classifiers can no longer give a satisfactory per-
formance on such data sets is because they make the fundamental assumption
that frequencies of classes are equally distributed. Adaptations to imbalanced
data sets are usually made by giving small class examples higher weights. One
simple way is resampling, which duplicates small class examples or selects only
a subset of large class ones. Such approaches do not have high performance, as
reported in [4], because various examples are affected differently by the class
imbalance problem. SMOTE [5] combines synthetic example generation with
downsampling, but the resampling degree is not specified. Resampling to reflect
relative weights between examples or classes still remains an art.

It is believed to be more promising to weight examples differently, and various
approaches have been proposed. Kubat et al. [3] insist that large class examples
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in a mixed region should be weighted zero as long as that increases performance
measure. Learning on a cluster basis is used [6] to weight examples accordingly.
Learning decision trees (DT) [7] is made independent of class frequencies by
using the Area Under the ROC Curve (AUC) as a splitting criterion, which
is equivalent to weighting examples according to their distribution in the set
of examples covered by the splitting nodes. A general way to optimally weight
examples (in Bayes risk sense) is using MetaCost [§], by bagging and then prob-
ability estimation. However, in highly imbalanced data sets, examples of small
class are rarely learned, making their optimal costs extremely high. Again, it is
still a challenge to weight examples optimally for the imbalanced data problem.

We propose a method to estimate the optimal weight of each small class
example basing solely on local data distributions. The intuition is that by looking
more closely into local data distribution, we have more chance to reveal useful
information about the effect of class imbalance. To this end, we first define
the concept of wvicinity, which characterizes local data distribution and then
determines examples’ weights with the aiming of maximizing AUC in the vicinity.
The weight is integrated into a rule induction algorithm at the rule pruning step.

The paper is organized as follows. Section 2 is the foundation and formu-
lation of our locally adaptive weighting scheme. Integration of the weighting
scheme into our rule learning algorithm is described in Section 3. In Section
4, we show experimental evaluations of the scheme to other imbalanced data
classifiers. Conclusions are presented and future work is discussed in section 5.

2 Locally Adaptive Weighting Scheme

We approach the imbalanced data problem by giving a weight adaptively for
each small class example, while keeping the weights of large class examples at a
default value (i.e. 1). The key idea is to weight each small class based on its local
neighborhood (hence, it is locally adaptive), which is defined as the vicinity of
the rule covering it. This section will define the concept of vicinity and derive the
formulation of example weighting based on vicinity using AUC as the criterion.

Vicinity: The idea behind vicinity is as follows. Consider two rules R;,i = 1,2
with the same coverage for every class (R; covers n;, p; examples from large and
small classes respectively, n1 = ma,p1 = p2). Conventionally, the two rules are
evaluated as the same goodness (e.g., precision for small class Lim ). Assume
that we have some way to define the surround of a rule, called a neighborhood. If
Ry is likely to be pruned to a better one, then in its neighborhood there must be
some examples of the same class as the predicting class of R;. On the other hand,
Ry is surrounded by examples from other classes, hence it cannot be pruned to
a better one. Our idea is to evaluate the two rules differently, Ry to be higher
than Rs, reflecting their ability to be pruned. This different evaluation is based
on the fact that there is a set of examples in each rule’s neighborhood, which
creates the difference in pruning ability. By vicinity, then, we mean this set of
examples. We define vicinity based on the concept of k-vicinity.
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Definition: The distance from a rule to an example is the minimum number
of attribute value pairs in the body of the rule that must be removed in order to
make the rule cover the example.

Definition: The k-vicinity of a rule R for a training data set D is the set of
examples in D that are less than or equal to a distance of k to the rule.

k-vicinity(R) = {z | « € D, Distance(R,z) < k} (1)

K-vicinity is a subset the training data set, which is potentially covered by
the rule after k steps of generalization. The smaller k is, the higher the influence
the examples in k-vicinity may have on the generalization (pruning) ability of
the rule. For example, O-vicinity is the set of examples covered by the rule, m-
vicinity is the whole data set if m is the number of attribute-value pairs in the
rule body. The set of all k-vicinities is a nested chain of subsets of the data set,
meaning: 0-vicinity C 1-vicinity C ... C m-vicinity. We define vicinity using this
chain with weights. Formally, vicinity is a function f over k-vicinities.

vicinity = f{1-vicinity, 2-vicinity, ..., m-vicinity } (2)

Estimating vicinity is a difficult task. However, the way around the problem

is to let the vicinity of a rule remain a virtual concept. We only need to calculate
the ratio of class distribution in the vicinity as in the weighting scheme discussed
in the next section.
Example Weighting and Rule Evaluation: As a vicinity is expected to con-
tain examples that influence the pruning ability of a rule, we use this assumption
to define the best rule as the one giving optimal classification within its vicinity.
Our idea is to weight examples in the vicinity such that the optimal classification
coincides with the lowest misclassification cost. Defining optimal classification
on a vicinity results in a locally adaptive weighting scheme.

We define optimal classification as the one that gives the largest AUC. AUC
is a popular metric for comparing classifiers’ performance [9] [10] when the mis-
classification costs are unknown. When a classifier is a set of rules, as in Figure[I]
(a), the ROC curve contains a set of line segments. Here, the classifier is assumed
to have four rules, sorted in decreasing order of their precision for a class. For
simplicity, we assume that there is only one rule for small class in a vicinity.
Then, the ROC curve of a classifier (by R or R2) in its vicinity would look like
Figure [l (b). The classifier here consists of a rule (say R) and the default rule
predicting the large class. Suppose R covers p small and n large class exam-
ples, and the vicinity contains P small and N large class examples. The rule
evaluation metric, defined to be AUC above, is calculated [7] as:

P n 1

AUC(R) = op 2N+ 9

(3)
The above formula implies that the weight of a small class example in this
vicinity is ]1\3[ when the weight of a large class example is the default value 1.
The rule evaluation metric is used to compare different rules for search bias.
However, it is not natural to compare AUC in different contexts (vicinities).
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Fig. 1. The ROC space: (a) plot of a rule learner. (b) for rule comparison in a vicinity.

Hence, we propose a comparison strategy that rule R; is considered better than
rule R if and only if it gives a higher AUC in the vicinity of R. Equivalently, R;
is considered better than R if their AUC difference (in formula Hl) is positive.

AUC(Ry) = AUC(R) = 5 ("p" = "") = 5l(p1 —p) 5 — (ma —n)] . (4)
For the purpose of comparing rules for search bias, it is sufficient to know 11\37.
This is the reason we allow vicinity to remain an abstract concept, while we
heuristically estimate ]1\37 directly. From equation 2l we propose to estimate class
distribution ratio 11\3/ in the vicinity to be:

N & Ng
P—;wk*Pk (5)

where m is the number of vicinities. In this formula, ]1\97: is class distribution
ratio in k-vicinity and wy is its associated weight, with Z wg = 1. This just
smooths out the class distribution ratios of different k-vicinities to estimate that
of the vicinity, in similar fashion to a shrinkage estimator, to make it robust. The
definition of vicinity is tunable by its weighting scheme, namely the set {wy}. If
wy, is large for small k-s, vicinity reflects more local information. If wy is large
for large k-s, vicinity is more global. If we want to define vicinity to be the whole
data set, then set w,, = 1. Having tunable set of {wy} is a generalization of a
simple cost sensitive classification. In this algorithm, we fix the default as:

Wg = 7k:17m (6)

Such weights can also be set adaptively by users.

Discussion: The key point which makes this example weighting scheme suitable
for imbalanced data is the use of a local neighborhood. Having a myopic view
around a rule gives us a better picture of how much the imbalance may hinder
classification rules. Examples far away from the boundaries of classes may not
participate in any vicinity, also not affecting class discrimination (this is similar
to the idea behind SVMs).
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IDL
1. Generate a candidate rule set
2. Prune rules from high coverage to low

GenerateRuleSet

1.  Generate a decision tree

2. Stop when leaf nodes contain only example from one class

3.  Extract the set of leaf nodes that contain only examples of small class
4.  Convert those nodes into rules and return

PruneRules

1. Sort rules according to coverage

2. From high to low coverage rule do
3. Remove best attribute value pair
4. Until no more AUC is gained

5.  Return pruned rules

Fig. 2. IDL algorithm
3 IDL: Imbalanced Data Learner

IDL is a rule induction algorithm, which uses an one-sided selection strategy,
taking example weights into account to learn rules for a small class. IDL consists
of two steps. First, it generates a set of candidate rules for the small class by
growing a decision tree, which are meant to be complete and of high precision.
Then it prunes these rules by greedily removing attribute value pairs to make
them robust. Example weighting is used in rule pruning step using Formula[3] as
the rule evaluation metric. The overall strategy is depicted in Figure 2

In the candidate rule set generation step, IDL grows a decision tree and only
stops when the leaf nodes contain examples from one class. As recommended in
[11], IDL takes the impurity (2\/p(1 —p)) gain as the splitting criterion. After
the decision tree is fully grown, the set of leaf nodes that contain only small
class examples are collected and turned into a set of rules. In the second step,
the collected rules for the small class are sorted in decreasing order of coverage.
Starting from the highest coverage one, each rule is pruned by removing the
best attribute value pair (the one having the highest AUC difference), according
to formula @ It stops when removing does not improve either AUC or when
the precision of the rule (calculated without taking weights into account) falls
under a certain threshold. The examples covered by a rule are marked so that if
they are covered again, only half of their weights are retained. This makes the
rules overlap, and also greatly improves the recall of the classifier. The threshold
represents the minimum precision a rule should achieve, reflecting the amount of
noise in the data. This threshold is generally set by the users, and is estimated in
IDL as follows. First, set it to 80%, then do a 10-fold stratified cross-validation
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on the data set to estimate its difficulty to learn. Taking the F-measure on the
small class, say f (percent), then the threshold takes the value max (50, f — 10).

In the first step, IDL constructs an unpruned decision tree, which is of O(ea)
time complexity, where e is the number of examples and a is the number of
attributes. In the second step, suppose it generates k rules, each has maximum
ny attribute value pairs. As each pruning operation requires a pass of the data
set to calculate the class distribution ratio in the vicinity, the time complexity
of this step is at most O(ekny).

4 Experimental Evaluation

We evaluated IDL on its ability to learn a small class, and compared it to other
approaches. The first of these was SMOTE-NC (over C4.5) [5], the nominal
categorical version of what is arguably best method (SMOTE) for learning im-
balanced data. Since SMOTE is sensitive to its degree of sampling parameters,
we ran it on three degrees of small class upsampling, namely N=100%, N= 300%
and N=700%. We also compared IDL to a general classifier of C4.5, with and
without cost sensitive setting. In cost sensitive setting (C.S.), the relative cost
is just the ratio of class distribution of the data set. Boosting is also capable
of enhancing imbalanced data learners [12], so AdaBoost over C4.5 was also
compared. We used these classifiers from WEKA[. All algorithms ran with their
default parameters. We used F-measure on the small class as the performance
criterion, instead of the AUC measure (since we learn only small class rules).

2 x precision * recall

(7)

We evaluated those algorithms on selected fifteen UCI data sets E, where
smallest class was chosen to be small class, and the other classes were merged
to become the large class. As the algorithm is for categorical data, all data sets
were discretized. We split data sets with a ratio of 75-25 randomly in a stratified
manner, the large parts were used for training and the small parts for testing.
Table[lshows the result of testing on the small part of the data. The columns are
names, percentage of small class proceeded with class index and then classifiers
(SMOTE is tested with three parameters). All numbers are in percentage. The
last line shows average performance of on all data sets.

The table shows that our approach outperforms general classifiers by a large
margin, and is competitive to all three parameters for SMOTE. IDL shows an
improvement of 11.74% in terms of F measure on the small class compared
to a standard classifier of C4.5. For the cost sensitive setting of C4.5 (C.S),
it also improves by 3.81%. Compared to AdaBoost, IDL’s accuracy is 2.85%
higher. This means that IDL is more suitable for imbalanced data than general
classifiers. Comparing IDL to a imbalanced data learner of SMOTE (SMOTE-
NC version), IDL is also competitive to the three parameter settings; the average

F — measure = .
precision + recall

! www.cs.waikato.ac.nz/ml/weka/
2 http://www.ics.uci.edu/ mlearn/MLRepository.html
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Table 1. Comparison of Classifiers on UCI data

SMOTE
Name % C4.5 C.S. 100 300 700 average A.Boost IDL
annealingl 11.0 739 623 774 71.0 66.7 717 70.6  96.2
car3 3.7 66.7 842 774 80.0 80.0 79.1 80.0 76.9
flare4 8.0 00 369 304 36.1 386 350 327 29.0
glass3 13.5 93.3 73.7 933 824 824 86.0 80.0  85.7
hypoO 50 85.7 819 857 83.1 831 84.0 84.6  84.6
inf0 6.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
krkopt16 09 857 828 884 8384 90.1 89.0 84.1 87.1
krkopt4 0.7 580 69.1 66.7 71.8 66.7 68.4 61.3 75.9
led7 8.4 59.8 599 639 61.6 505 58.7 50.7 624
letterO 3.9 91.0 90.0 92.0 91.8 89.7 91.2 96.0  92.0
satimage3 9.7 51.5 528 579 51.8 51.3 53.7 57.9  50.3
segmentation5 14.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
sickl 6.5 828 69.6 828 81.8 738 795 82.8  80.9
vowel5 9.1 00 752 67.8 694 655 682 80.0  60.0
yeast4d 3.4 0.0 30.8 333 444 40.0 39.2 21.1 43.5
Average 6.94 63.23 71.16 74.59 74.24 71.89 73.57 72.12 74.97

o 10 60 70

SMOTE average
Fig. 3. Improvement of IDL versus SMOTE

performance of SMOTE is 1.40% lower than that of IDL. It is noteworthy that
there is no systematical way to determine the resampling degree for SMOTE.

It is interesting to look at the improvement of IDL over C4.5 compared to
the average improvement of that of SMOTE over C4.5 in Figure Bl X axis is
the performance improvement of SMOTE (averaging all parameters), while y
axis is for IDL. The set of points shows a near linear relation. This means that
improvement of IDL is proportionate with that of SMOTE, meaning that IDL
is consistently similar to SMOTE.

5 Conclusion

We have proposed a method to weight examples for a small class based on their
local neighborhood. Neighborhood is defined as the virtual concept of vicin-
ity, while computation is based on k-vicinities. The algorithm is clearly more
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accurate than general classifiers, including Adaboost and MetaCost, and is com-
petitive to SMOTE while having the advantage of not requiring resampling pa-
rameters. From this, we can conclude that the information of neighborhood of
an example is useful for weighting it, in order to compensate imbalanced data.

The clear limitation of this method is how to define the weighting scheme

for a vicinity. For the moment, computational complexity is its main problem,
which should be reduced for large data sets. Applying the weighting scheme to
other classifiers for imbalanced data is a natural extension. Whether local data
distribution can be used to improve classifiers in general is an open question.
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