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Discriminative Graph Embedding for
Label Propagation

Canh Hao Nguyen and Hiroshi Mamitsuka

Abstract— In many applications, the available information is
encoded in graph structures. This is a common problem in
biological networks, social networks, web communities and doc-
ument citations. We investigate the problem of classifying nodes’
labels on a similarity graph given only a graph structure on the
nodes. Conventional machine learning methods usually require
data to reside in some Euclidean spaces or to have a kernel
representation. Applying these methods to nodes on graphs would
require embedding the graphs into these spaces. By embedding
and then learning the nodes on graphs, most methods are either
flexible with different learning objectives or efficient enough for
large scale applications. We propose a method to embed a graph
into a feature space for a discriminative purpose. Our idea is to
include label information into the embedding process, making the
space representation tailored to the task. We design embedding
objective functions that the following learning formulations
become spectral transforms. We then reformulate these spectral
transforms into multiple kernel learning problems. Our method,
while being tailored to the discriminative tasks, is efficient and
can scale to massive data sets. We show the need of discriminative
embedding on some simulations. Applying to biological network
problems, our method is shown to outperform baselines.

Index Terms— Graph embedding, label propagation, multiple
kernel learning.

I. INTRODUCTION

WE INVESTIGATE the problem of propagating labels on
a proximity graph without descriptive information on

the nodes of the graph. An example is in biomedical research,
where the knowledge of gene and protein relations is conve-
niently encoded in networks [1]. The target is to use graph
structures to learn a function that label the graphs’ nodes in a
reliable manner. Graph structures have shown to contain nec-
essary information for various tasks. Graph structures are used
in graph-based semi-supervised learning or learning with side
information [2]. However, these methods require a premier
information source of the nodes such as kernels or Euclidean
spaces, which we assume not available. In these methods, the
graphs are usually constrained to have parametric representa-
tions of subspaces of the original spaces that the nodes reside
in. In our problem setting, there is no kernels or Euclidean
representations of the nodes. Therefore, the graphs are not con-
strained to any parametric representation, allowing more flex-
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ibility in their possible space representations. Graph structures
are also used in manifold learning, which are usually for an
unsupervised purpose. We aim here for the supervised purpose.

By having only a graph representation of data, the con-
ventional learning methods cannot be applied directly as they
operate on Euclidean spaces or kernels. Therefore, it is the
common solution to convert the graphs into conventional
representations, in other words, to embed the graphs into
Euclidean or kernel spaces [3]. Converting data on graphs into
Euclidean or kernel spaces poses some difficulties. First, it
is the difficulty of extracting and preserving the information
that closely reflects the graph structures [4]. It is also difficult
to extract only the relevant information for the task at hand,
making it easier for the learning algorithms to work on.
Another difficulty is to be able to deal with large scale data-
sets in an efficient manner.

We consider the supervised node classification problem
given only a graph structure (edges) among the nodes, without
nodes’ descriptive attributes. An example can be found in
Fig. 1. There are different approaches to the problem but
none of them deliver an efficient and flexible solution for
discriminative tasks. A major approach to this problem is to
construct a kernel or an embedding that contains smooth func-
tions on the graph [3]–[5]. This approach is unsupervised, and
therefore the space may not contain the information required
to construct the function of interest, hindering its effectiveness
for discriminative task. This approach can be refined by using
a spectral transform specifically for a supervised purpose
[6], [7], but the learned function still resides in the same
embedding space, which is not meant to contain discriminative
information. A more direct approach is to use graph structure
as a smoothness constraint [8], [9]. However, this approach
is limited to the objective of a least square loss function on
training labels. We will also show that this approach is equiva-
lent to a limited choice of kernels with inappropriate decision
functions, making it less reliable. The most flexible approach
in terms of objective function is to use any loss function with
a smoothness constraint. By using a general loss function [10]
coupled with graph weight learning, the formulation is general
but inefficient. The solution provided in [10] is the kernel
learning approach with a simple graph Laplacian kernel.

We propose a method, named DisEmp, targeting both effi-
ciency and effectiveness. The idea is to embed the graph into
a Euclidean space enriched with discriminative information.
From the embedded data in the space, a globally optimal and
reliable learning step is carried out. It is shown to have the in-
terpretation of combining principal component analysis (PCA)
and linear discriminant analysis (LDA) [11] for graph embed-
ding. It is made efficient by using a generalized eigenvalue
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Fig. 1. Label propagation on graph, given a network connectivity of nodes
with labels (ball or star), predict the labels of unlabeled nodes.

problem. The embedding makes the following learning step
more flexible and reliable, meaning that the problem is easier
to be learned. For the learning step, we specifically formulate
an optimal feature weighting and large margin-based learning
objective function, which is known for its effectiveness. This
formulation leads to a multiple kernel learning (MKL) problem
[12], which is well studied and has large-scale, efficient
solutions. As this formulation is a large margin reformulation
of the method in [7] equipped with efficient solutions, it is a
contribution per se. By separating the embedding and learning
steps, the total time of the method is the sum of the time of
each step, which is known to be efficient.

This paper is organized as follows. We state the problem,
review previous works and their limitations in Section II. We
then describe our method in Section III. We elaborate more
on its properties in Section IV. We present some simulations
to show essential properties of the method in Section V. We
then present an application of the method on gene function
prediction problems in Section VI and conclude this paper.

II. PROBLEM AND RELATED WORK

We state the problem as follows: Given a set of nodes X =
{xi }n

i=1 and a graph G = (X, W ), in which G is a graph with
edges W = {wi j }n

i, j=1, wi j ∈ R (matrix of edge weights) and
the node set X . A supervised learning problem is that given
a set of labels, yi of node xi for some i , we want to learn
a function f such that for an unlabeled node x , f (x) is a
reliable label. A pictorial description of the problem can be
seen in Fig. 1. It is a common way to learn f that f (xi) ∼= yi

and f is regularized in some forms. In this problem setting,
only graph structure information is used to induce unknown
labels on a graph from known ones.

It goes without saying that the graph edges’ weights are
interpreted as similarity scores between pairs of nodes. For
that, it is the common goal of all the approaches to learn
a function f that is smooth on the graph in the sense that
|| f (xi ) − f (x j )|| must be small in presence of an edge with
a large weight between xi and x j . Most methods quantify the
smoothness of f by using graph Laplacians [13] as follows.
Denote D as a diagonal matrix of the same size, in which its

diagonal entries are calculated as dii = ∑n
j=1 wi j . The (un-

normalized) graph Laplacian is defined to be L
def= D − W . The

smoothness of the function f on the graph is then measured as

f T L f = 1

2

n∑

i=1

n∑

j=1

wi j ( fi − f j )
2 (1)

given that f is normalized, i.e., f T f = 1.
The smaller f T L f , the smoother f is. This measure is used

for many different purposes [14]. It is used for semi-supervised
learning [2], [15] where a function needs to be smooth on both
labeled and unlabeled data. It is used in spectral clustering
[9], [16] where the smoothness on clusters is sought. It is also
used for dimensionality reduction [4] as the mappings based
on eigenvectors of a graph Laplacian yield the most faithful
embedding of the graph data on a Euclidean space in the sense
that it gives the smoothest embedding on local neighborhoods.

There are two main lines of methods. The first line is called
here feature extraction methods. They first extract data into
a common representation such as on Euclidean spaces and
then learning can be done efficiently and flexibly from there.
The second line is called integrated methods for the reason of
having both targets, label and graph structure information in
a single objective function to be optimized. We will analyze
all these methods in three criteria, the features extracted, the
ways to weight features to build kernels, and the learning
objective functions.

A. Feature Extraction Methods

We elaborate on the methods that fall into the category of
extracting features from graphs for learning purposes. In these
methods, features are extracted, weighted and then combined
to form kernels. Different kernels only mean different features
extracted and different ways to combined them.

1) Unsupervised Feature Extraction: One of the common
methods for learning over a graph is to extract features
or induce kernels from the graph structure, for example,
diffusion kernels [5]. Diffusion kernels use connectivity
between two nodes on the graphs to define a kernel value
between the nodes. Suppose the eigen-decomposition of L is
L = ∑n

i=1 λi ei eT
i , then the kernel

K
def= exp(−βL) =

n∑

i=1

exp(−βλi )ei e
T
i .

The idea is extended further by using different transforma-
tions of the eigenvalue of L, each has a different interpretations
as in [3]. The same idea is used for Euclidean embedding of
manifolds constructed from neighborhood graphs [4]. Another
variant is in [6] where parameter β of the diffusion kernel is
set to optimize the von Neumann Entropy of the kernel K ,
subject to constraints on some smoothness measures.

2) Supervised Feature Combination: Given the features
are eigenvectors, in [7], features are combined using label
information directly for a discriminative purpose. It is a
non-parametric spectral transform maximizing kernel target
alignment (KTA) [17]. In this method, to guarantee smooth-
ness, a kernel from the graph is limited to the family of
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Kμ
def= μ(λi )ei eT

i , where μ is a non-increasing function. It is
noteworthy here that this formulation offers a family of kernels
that encompasses all the families suggested in [3]. The optimal
transformation μ∗ is determined by

μ∗ = arg max
μ

K T A(Kμ, yyT ) (2)

with y as the vector of labels and

K T A(Kμ, yyT ) =
〈
K , y · yT

〉
F

m
√

( 〈K , K 〉F )

where 〈, 〉F is the Frobenius inner product of matrices.
The problem of this feature weighting method is that using

KTA is not theoretically sound as from the analysis in [18].
KTA optimization only means a higher classification in a strict
condition. When the condition is not satisfied, higher KTA
value does not mean a higher discriminative ability. Therefore,
it is desirable to use other well-studied criteria such as margin
to optimize feature weights.

These weighted features are then combined to build kernels.
Learning is then applied in kernels, such as with large margin
objective functions.

3) Remark: The following is observed for these methods.

a) Feature extraction: eigenvectors of graph Laplacian.
b) Feature weighting: with KTA as the objective func-

tion. It is not theoretically sound to optimize KTA.
However, this method offers the most flexible kernel
family compared to the non-learning methods in
[3], [4], and [6].

c) Decision function: linear classification with large
margin objective function.

B. Integrated Methods

These methods combine feature extraction, weighting, and
learning into a single objective function. This enables weight-
ing of smoothness, i.e., weighting of graph Laplacians, to be
optimal for a supervised purpose. However, it is tricky to in-
corporate both steps to have an efficient, effective, and flexible
objective function. The main reason is that to be efficient, most
methods use the least square loss for a discriminative purpose
instead of margin-based ones. To use margin-based losses, the
solution is no longer computationally efficient [10].

1) Efficient Formulation: The typical methods, such as in,
[8], [9], and [19], for one or more graphs, are formulated to
optimize the following problem:

arg min
f

( f − y)T ( f − y) s.t. f T Li f ≤ γ ∀i. (3)

Through a different procedure, the resulting solution of the
above formulation coincides with the result of the step 2 of
[20] or spectral learning with constraints in [21] and [22],
that is1

f = (I + L)−1 y
def= K y (4)

for L as some conic combination of Li .

1We denote M−1 here for both inverse and pseudoinverse of a matrix M
for convenience.

We will show here that these methods [8], [9], [19], [20] are
equivalent to using regularized graph kernels and the decision
functions learned can be read from the kernel-induced feature
spaces. In light of this analysis, we will show that there are two
problems with all these approaches attributed to this formula-
tion: 1) limited choices of kernels from the limited feature
weighting options, and 2) inappropriate decision functions
associated with the kernels.

The first problem 1) is as follows. Suppose that L =∑
λi ei eT

i as the eigen-decomposition of L, then

K =
n∑

i=1

1

λi + 1
ei e

T
i .

This means that K is a regularized graph kernels based on L
with a specific regularization function r : R → R that

r(λ) = 1

λ + 1
. (5)

This means that implicit features used in these methods are
still eigenvectors of graph Laplacians.

Furthermore, this also means that feature weighting in these
methods follows the formulation in (5). This is a restricted
kernel family that may not deliver the highest possible per-
formance. There are many more parametric kernel families
that can be applied, for examples, in [3]. The nonparametric
spectral transform in [7], being the most flexible transform
compared to that in [3], offers an even greater kernel family.

The second problem 2) of this formulation is its decision
function, which is set to be K y as in (4). As K here is
regarded as a regularized graph kernel [3], we show that the
decision function with the current setting of y does not give a
sensible statistical interpretation on the space induced by the
regularized graph kernel. Suppose that this kernel K induces
a feature space representation � = [φ1, φ2 . . . φn] in some
space, i.e., Kij = φT

i · φ j , then

K y = (�T · �) · y = �T · (� · y) = �T · w (6)

for w = � · y. In other words, this is a linear decision function
with the weight vector w. In all these methods, components
of y are set to be ±1 depending on their classes, then

w =
∑

yi=1

φi −
∑

y j =−1

φ j .

w is then the vector between the sums of all the points in the
two classes. This means that w is not a meaningful weight
vector for linear classification as in (6).

This decision function, for w as proposed in these methods,
is efficient to compute but does not expect to deliver a high
performance as no loss optimizations are performed once K
is fixed.

2) General Formulation: The most versatile approach is in
[10] that incorporates loss function with smoothness measure
together

arg min
f,μ

∑
l(xi , yi , f ) + μi f T Li f (7)

for any loss function l. This approach, from a graph kernel
viewpoint, use the kernel K = L−1, which is not regularized.
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Input: A graph G with training node labels y.
    1) Constructing graph Laplacian L, training label matrix
        Y as in Section III-A.
    2) Step 1: Embedding the graph into Rm . Extracting the
        first m features in Section III-A.
    3) Step 2: Weighting the features with a large margin
        objective function and learning a SVM classifier in
       Section III-B via MKL.
    4) Inferring label of test nodes from the classifier.
Output: label function.
 

Fig. 2. DisEmp: Discriminative graph embedding for label propagation.

This approach is very expensive as it must carry out the whole
learning process as an internal step together with optimizing
weights of graph Laplacians as the external loop. For only one
graph with hinge loss, it becomes the non-optimized version
in the feature weighting sense compared to other feature
extraction methods in Section II-A.

3) Remark: For the efficient formulation, the following
interpretations are concluded.

a) Feature extraction: not explicit but equivalent to eigen-
vectors of graph Laplacians.

b) Feature weighting: a specific form of regularization
in (5).

c) Decision function: none-learning version. It is not op-
timal nor interpretable in the kernel-induced feature
spaces.

The general formulation is too expensive computationally [10].

III. DISEMP: DISCRIMINATIVE GRAPH EMBEDDING FOR

LABEL PROPAGATION

As we see in Section II, previous methods do not satisfy
the need of both efficiency and effectiveness at the same time.
We propose a method, named DisEmp, to classify labels on a
graph for classification problems. A graph is first embedded
into a Euclidean space that targets both, being faithful to the
graph structure and having a discriminative ability. This step
improves the embeddings without label information (in [3],
[4], [6]) for a supervised purpose, therefore more information-
rich. From the embedded distribution, a nonparametric spectral
transform is used to optimally weight eigenvectors together
with learning labels with a margin-based loss function. This
step is both efficient and robust (compared to [7], [8], and
[9]) because of the MKL formulation. An overview of our
method is in Fig. 2.

A. Step 1: Discriminative Graph Embedding via Vari-
ance/Distance on Graphs

The purpose is to extract m features from a graph with two
types of information: descriptive information of the graph, i.e.,
graph smoothness, and discriminative information with respect
to label information. We describe both types of information
before arriving at the final formulations. Given a graph G with
the graph Laplacian L. In the context of supervised learning,
we assume a label vector y = {yi , y2, . . . , yn}T , yi ∈ R.

In case of binary classification tasks, assume yi = (1/n+)
or yi = (−1/n−) depending on whether xi is a positive
or negative example, respectively, where n+ and n− are
corresponding numbers of examples in the classes. Testing
data will have yi = 0. Define Y to be a n ×n matrix of labels,
setting Yi j = yi y j as the (pairwise) label matrix. f ∈ R

n is
denoted as any function on the graph.

1) Feature Objectives: The overall objective is to extract m
features (e1, e2 . . . em), ei ∈ R

n from a graph to represent it
in a Euclidean space for discriminative learning (classification
or regression). Therefore, it is desirable to have ei already
containing discriminative information, i.e., ei depends on the
label information of the nodes. It is a convention to seek ei

that is close to the label y in some senses. Therefore, our
objective is to make ei containing label information as well
as respecting graph structures.

The first target is to extract m features with discriminative
ability, named variance to distance ratio, we use the angle
between y and f as follows:

(e1, e2 . . . em) = arg min
f

f T f

f T Y f
. (8)

The above target is solely for discriminative features, hence
it may not respect the graph structures. Therefore, it is
necessary to have ei smooth on the graph. For this target,
one could use a conventional setting

(e1, e2 . . . em) = arg min
f

f T L f

f T f
. (9)

The objective of our discriminative feature extraction from
a graph is to achieve both targets (8) and (9). Since they are
usually not satisfied at the same time, we propose ways to
compromise both targets and depending on applications, users
can choose a suitable compromise. We show in Section IV
that the objectives are interpreted as LDA and PCA ways of
embedding graphs.

2) Discriminative Graph Embedding: As we want to have
both graph structure information and label information into the
space, our discriminative embedding is a combination of the
two targets in (8) and (9). When combining the two objectives
into one, we need to compromise them by assigning a weight
to each objective and combine them with weights in some
ways. We propose three variations of objective combinations
for DisEmp: additive, subtractive, or multiplicative DisEmp.
The m features to be extracted are the m eigenvectors asso-
ciated with the m smallest eigenvalues of these generalized
eigenvalue problems.

Multiplicative DisEmp

(e1, e2 . . . em) = arg min
f

(
f T f

f T Y f

)c

·
(

f T L f

f T f

)(1−c)

. (10)

It is expensive to raise to the powers c, therefore we can
only recommend to use the case where c = 0.5 as follows:

(e1, e2 . . . em) = arg min
f

f T f

f T Y f
· f T L f

f T f

= arg min
f

f T L f

f T Y f
. (11)
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Knowing that setting c = 0.5 does not allow different
weightings of smoothness and label information, therefore,
this combination is not supposed to give the highest possible
performance.

Additive DisEmp

(e1, e2 . . . em) = arg min
f

c · f T L f + (1 − c) · f T f

c · f T f + (1 − c) · f T Y f

= arg min
f

f T (c · L + (1 − c) · I ) f

f T (c · I + (1 − c) · Y ) f
. (12)

Subtractive DisEmp: Recall that the objective in (8) can be
rephrased as

(e1, e2 . . . em) = arg min
f

− f T Y f

f T f
.

Then we have

(e1, e2 . . . em) = arg min
f

c · f T L f

f T f
− (1 − c) · f T Y f

f T f

= arg min
f

f T (c · L − (1 − c) · Y ) f

f T f
. (13)

B. Step 2: Optimal Spectral Transform

Having obtained a set of m eigenvectors as features for the
graph nodes, one can learn a kernel from this by weighting
these eigenvectors for node labels prediction. We propose an
efficient and effective method to combine features (eigenvec-
tors) for a discriminative purpose (classification or regression)
as in the algorithm in Fig. 2. As it transforms eigenvalues,
it becomes a (nonparametric) spectral transform method. The
formulation is robust because we use the large margin objec-
tive function. The problem is then formulated into a MKL
problem, which is well-studied and has efficient solutions, for
example in [12]. We show two versions of learning weights,
one with order constraints and one without order constraints
for completeness. However, our experiments later on only use
the latter version (without order constraints).

1) Spectral Transform with Order Constraints: Denote
Kk = ∑k

i=1 ei eT
i as a sum of the first k kernels generated by

the first k eigenvectors. Suppose that we take m eigenvectors,
i.e., embedding the graph into an m-dimensional space. Then,
for any non-increasing function μ on real numbers

K =
m∑

i=1

μ(λi )ei e
T
i s.t. μ(λi ) ≥ μ(λi+1)

= μ(λm)

m∑

i=1

ei e
T
i

+ (μ(λm−1) − μ(λm))

m−1∑

i=1

ei e
T
i

+ · · · + (μ(λ1) − μ(λ2))

1∑

i=1

ei e
T
i .

= μ(λm)Km +
m−1∑

k=1

(μ(λk) − μ(λk+1))Kk . (14)

Denoting μm = μ(λm), μk = μ(λk) − μ(λk+1) for k =
1, 2, . . . (m − 1), we have a new formulation of K as

K =
m∑

k=1

μk Kk for any μk ≥ 0.

The key difference in this formulation compared to that of
[7] is the use of auxiliary kernels Kk that removes the order
constraints. The order constraints become the positivity con-
straints of differences. Corresponding coefficients of Kk are
no longer the absolute transformed values of the eigenvalues
of the graph Laplacian, but their differences.

Our method is then defined to be: finding μi ≥ 0 such that
K has the largest margin (subject to total sum of μi being 1).
It is formulated as follows:

max
μ

min
α

m∑

k=1

μk

⎧
⎨

⎩

1

2

n∑

i, j=1

αiα j yi y j Kk(i, j) −
n∑

i=1

αi

⎫
⎬

⎭

w.r.t. α ∈ R
n, μ ∈ R

m

s.t. 0 ≤ α ≤ C, 0 ≤ μ,

n∑

i=1

αi yi = 0

and
m∑

k=1

μk = 1. (15)

This formulation is a standard MKL problem [12]. One can
use other variations of MKL problem as well. A solution to this
formulation can be made efficient by using the well-studied
MKL solution directly.

It is noteworthy that this is a large margin reformulation of
the nonparametric spectral transform in [7]. By using large
margin objective function, this formulation is theoretically
sound, statistically interpretable and has computationally ef-
ficient solutions. Therefore, this formulation is a contribution
per se.

2) Spectral Transform without Order Constraints: Given
that the weight of each eigenvector (kernel) is computed to
optimize the margin, it may not necessary to keep the order
constraints. Instead, we let the weights to be determined for
a large margin purpose. This may not keep the nonparametric
spectral transforms decreasing. This is an extension of the
transforms with order constraints, offering a larger kernel
family to search from. The method then can be formulated
as follows.

Denote K ∗
k = ekeT

k as the kernel formed by the k-th
eigenvector. The problem is to find a (nonnegative) weight
for each K ∗

k independently. It is formulated as

max
μ

min
α

m∑

k=1

μk

⎧
⎨

⎩

1

2

n∑

i, j=1

αiα j yi y j K ∗
k (i, j) −

n∑

i=1

αi

⎫
⎬

⎭

w.r.t. α ∈ R
n, μ ∈ R

m

s.t. 0 ≤ α ≤ C, 0 ≤ μ,

n∑

i=1

αi yi = 0

and
m∑

k=1

μk = 1. (16)
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This also results in a MKL problem where previous efficient
formulation and software are utilized, for example, in [12],
among others. In our implementation, we use this formulation
with the code from [12].

3) Discussion: Experiments in this paper follow the version
in Section III-B2, nonparametric spectral transform without
order constraints.

As in [7], spectral transform is used to generate kernels
from graphs. One of its drawbacks is the objective function
of spectral transform, being KTA, which is not theoretically
sound. Another drawback is that it results in a standard
second-order cone programming (SOCP). We emphasize that
our proposed formulation overcomes these drawbacks. By
using the large margin objective function, our formulation is
expected to be more robust.

IV. PROPERTIES

We show some properties of the method, its special
cases, efficiency, interpretations and comparisons with other
methods.

1) The method estimates labels using margin-based loss or
anything else, which is expected to be more robust than
square loss-based ones.

2) The method incurs an expense of an additional parame-
ter, i.e., trade-off parameter between graph smoothness
and label information.

3) The method is transductive, i.e., testing data should be
included at training time. This is because the method
is an embedding method. This is different from other
methods on Euclidean spaces or kernels because these
methods are projection ones. The solutions of these
methods have prior parametric representations (usually
in some subspaces).

4) Feature weighting (spectral transform of eigenvalues)
is globally optimal (Section III-B). Our formulations
directly improve from the method in [7] and have
efficient solutions.

A. Special Cases

Our main contribution is to add label information into em-
bedding process (by setting 0<c<1). However, even without
label information, our proposed method has the following
special cases.

1) Nearest neighbors (NN): having c → 0 makes these
combinations converge to the case of embedding the
whole class to a single point. In this case, large margin
classifiers become NN algorithm, a test point is classified
to the class that the most of its neighbors belong to. A
test point makes the embedding along its adjacent edges.
If most of the adjacent edges link to a class, then the
test point is closest to the collapsing point of that class.

2) Large margin spectral transform (LMST): having c = 1
makes our method become LMST of the graph Lapla-
cians. This is a learning version of methods in
[3]–[6], weighting each eigenvector optimally to opti-
mize the margins of classifiers. This is supposed to be
an improvement from the method in [7], replacing the

theoretically not sound KTA criterion with the theoreti-
cally sound margin-based one. By having a margin refor-
mulation instead of KTA in [7], LMST is theoretically
sound. LMST alone can be regarded as a contribution
of our method, but we use it as a baseline to assess the
merit of our main contribution, adding label information
into the embedding process.

B. Efficiency

The computational time of the method is the sum of the
time of a generalized eigenvalue problem and a MKL problem.
While the worst case could be expensive, for the real data, our
proposed method is very efficient for the following reasons.

1) The first step can be made very efficient by using some
simple tricks. It is a generalized eigenvalue problem on
non-sparse matrices. However, the graphs are usually
sparse in our applications or in other methods (such
as NN graphs). Therefore, computing f T L f is efficient
using sparse matrix representation. Y is not sparse but
has a structure (of rank 1). f T Y f has a closed form
and can be computed efficiently. All in all, extract-
ing eigenvectors and eigenvalues in (12) and (13) is
very efficient (in comparison with general generalized
eigenvalue problem) using the functional form of the
numerators and denominators of our proposed objective
functions. The eigen-decomposition procedure from [23]
is used to take advantage of the functional form of the
matrices. The overall running time is mainly on the
second step of the method.

2) The overall computational time is then dominated by
the complexity of the second step, which is a MKL
problem. We refer to the solution in [12], which is a
semi-indefinite linear program. As in [12], the method
is efficient and scales to massive datasets.

In term of computational complexity, in comparison with
PCA or LDA-based feature extraction methods, our method
does not incur additional expenses for sparse networks. The
reason is that computational burden of our method and
PCA/LDA-based ones are all eigen-decomposition. As ana-
lyzed above, even our method results in eigen-decomposition
problem of a non-sparse matrices, we use the functional
form of matrices to take advantage of its special structure to
ensure the same computational complexity. Given that most
of the time are consumed by the common learning step, the
difference in term of computational complexity of our method
and PCA/LDA-based ones is negligible.

For dense networks without any special network structure,
all the methods are based on eigen-decomposition of dense
matrices, requiring the same computational burden.

C. PCA/LDA Combination Interpretation

As in [24], Laplacian eigenmaps are interpreted as a PCA
way of embedding graphs, which coincides with the smooth-
ness feature objective of DisEmp in (9). The same argument
can be applied here to show that our DisEmp method consists
of different variations of combining PCA and LDA for some



NGUYEN AND MAMITSUKA: DISCRIMINATIVE GRAPH EMBEDDING FOR LABEL PROPAGATION 1401

TABLE I

COMPARING APPROACHES IN TERMS OF LOSS FUNCTIONS AND

OPTIMIZATION PROBLEMS. MOST METHODS USE ON QUADRATIC

LOSS FUNCTION TO BE EFFICIENT

Methods Loss function Optimization Problem
Tsuda’s [8] square LP
Zhu’s [7] KTA SOCP
Zhou’s [9] square QP
Argyriou’s [10] margin/any QP
DisEmp margin/any SILP

specific graph kernels. In fact, LDA- and PCA-based feature
extractions are just special cases.

Proposition 1: The formulation in (9) is equivalent to ker-
nel PCA in terms of feature extraction.

Proof: The features extracted from the formulation in
(9) are the eigenvectors of the graph Laplacian L. Setting
K = L−1, then K has exactly the same eigenvector set
(except for the trivial ones) with eigenvalues are inversed.
Hence, eigenvectors with smallest eigenvalues of L are the
eigenvectors with the largest eigenvalues of K . Therefore,
this formulation gives the same result (feature set) as kernel
PCA on the kernel K [25]. The same argument can be found
in [24].

Proposition 2: The formulation in (8), namely variance to
distance formulation, is equivalent to kernel LDA in terms of
feature extraction.

Proof: Using the same argument as in [24], we take K =
L−1 as a kernel. Having L1 = 0 where 1 = {1, 1, . . . 1}T ∈
R

n , 0 = {0, 0, . . . 0}T ∈ R
n , then K 1 = 0, meaning data are

centered from this kernel. This means that any projection of
data from this kernel, f , we have f T 1 = 0.

Given that f is any projection of data from the kernel K
as defined above, from the formulation in (8), the numerator
is f T f = ∑

i f 2
i , which is a scale of the variance of the

embedded data (because
∑

i fi = 0). This is the numerator.
The denominator is

f T Y f =
(∑

yi=+1 fi

n+
−

∑
yi=−1 fi

n−

)2

which is the between class variance of the embedded data.
Therefore, the formulation in (8) is equivalent to LDA

feature extraction on a kernel induced from the graph.
Corollary 1: The multiplicative, subtractive, and additive

DisEmp are different alternatives to combine the objectives
of PCA and LDA for feature extraction.

From a multiobjective optimization viewpoint, these formu-
lations are just different ways of combining objective func-
tions. The characteristics of multiplicative DisEmp is that only
some specific parameter settings of multiplicative DisEmp can
have efficient solutions. Other formulations allow continuous
parameter variations without breaking the problem structure,
therefore giving more flexibility.

D. Discussion

Our problem setting is different from other approaches:
Laplacian support vector machines [2], local fisher discrim-

(a) (b) (c) (d)

Fig. 3. Multimodal graphs: each class consists of several clusters. Clusters
from the same class are not directly connected to each other, but connected via
clusters of the other classes. (a) T junction. (b) Linear. (c) L shape. (d) T shape.

inant analysis [26], marginal fisher analysis [27], [28], local
discriminant embedding [29], their extensions and variations
[30]–[32], that all these methods use a primary information
source of nodes represented in some Euclidean spaces or by
kernels. The difference to our problem setting is that these
methods restrict the nodes to have a parametric representation,
while our setting is not restricted to that. For this reason,
all these methods are for projections, with graph embedding
as an additional information. Our approach is for the case
when only graph structures exist, and therefore, is purely a
graph embedding technique. Another difference is that these
approaches are either equivalent to either PCA or LDA while
our method compromises both objectives. At the expense of
a trade-off parameter, our method has the potential of finding
the most suitable compromise for the highest performance.

Our method is different from unsupervised methods such
as in [4] and [7] using graph Laplacians, having the identity
matrix I in place of Y . It is different from [26] and [33] as
these methods are for data in Euclidean spaces, which can be
reformulated for kernels. These methods are not applicable for
the case having only graph structures among data objects.

We summarize objective functions used in different methods
in Table I. The optimization problems are linear programming
(LP), quadratic programming (QP), SOCP, and semi-indefinite
linear programming (SILP).

V. SIMULATION

We design some simulations on toy graph data with clear
structure interpretations to show the scenarios where discrim-
inative embedding methods are supposed to be useful for a
discriminative purpose. The key idea in these simulations is
the different graph topologies.

A. Simulation Setting

In all the following experiments, as depicted in the figures,
a ball or star means a fully connected cluster of 20 nodes
with an equal weight w. A gray line between balls means
a full bipartite graph between the two balls, i.e., any node
in each cluster connects to any node in the other cluster with
weight 1−w. The experiments are done by 80%/20% train/test
splits and repeated 50 times. The means of the areas under
the receiver operating characteristic curve (AUC scores) are
reported. Graphs are embedded into a 3-D space (m = 3).
We vary the values of within cluster weight w. We also vary
trade-off parameters c. We use the additive DisEmp version.

B. Multimodal Case

We simulated different topologies of graphs as shown in
Fig. 3(a) and (b). The idea of these topologies is that each
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Fig. 4. AUC scores of different graph topologies. The legends are different
weight w values. Vertical axes are AUC scores. Horizontal axes show different
c values. These figures show that different trade-off c values give different
AUC scores, and the highest performances happen at 0 < c < 1. (a) T
junction. (b) Linear. (c) L shape. (d) T shape.

class consists of several clusters dispatched to different places,
not directly connected to each other. We name this type of
topology multimodal. When the inter-cluster weight is high
enough, we expect the label propagation algorithm to be able
to correctly predict labels in these graphs.

Average AUC scores are visualized in Fig. 4(a) and (b).
Note that horizontal axes are different trade-off parameter c
values. As we can see, setting c = 0, which is equivalent
to Laplacian eigenmaps followed by a supervised feature
weighting (by MKL), did not give a high performance. By
utilizing label information in the embedding (setting c < 1),
data from the same class in the Euclidean space were pulled
together, making the embedding easier to be learned (giving
very high AUC scores). As a result, using label information
proves to be essential in these cases.

Remark 1: The method shows advantage when clusters of
one class are distributed to different places, i.e., the class
is multimodal. They are not directly connected, but through
clusters of the other class.

C. Complicated Boundary Case

We also simulated different topologies as shown in Fig. 3(c)
and (d). The key idea is that in these topologies, even the whole
class is connected, but as in the figure, the boundary between
the two classes is complicated. These topologies require a
nonlinear function in the figure to separate them. We expect
that in the embedding space, a nonlinear decision function is
also required to classify the two classes to achieve the highest
result.

From the results in Fig. 4(c) and (d), we see that without
using label information (c = 1.00), i.e., Laplacian eigenmap
followed by MKL, the performance was not the highest. By
using some label information (by setting c < 1) together
with graph smoothness, our DisEmp method achieved the
maximum performance.

Remark 2: Even though clusters of the same class are
connected, given a complicated connectivity to clusters of the
other class (nonlinear boundary in the figures), the method is
helpful to increase performance.

In conclusion, in these simulations, we have shown that
in these multimodal and nonlinear boundary cases, having
label information is beneficial to increase performance. This
is a result of using label information to have data of the
same class closer to each other, making the classification
problem easier. This means that our method of discriminative
embedding of graph has more discriminative power compared
to the method not considering label information. This also
signifies the use of label information in embedding graphs
for a discriminative purpose.

VI. APPLICATION: GENE FUNCTION PREDICTION

We applied the method to the problem of predicting
gene function. We used two biological networks of Saccha-
romyces cerevisiae, gene network and protein-protein interac-
tion (PPI) network. The three gene function categories: amino
acid metabolism, carbohydrate metabolism, and nucleotide
metabolism were selected for having the largest numbers of
genes. We used only the largest connected component from
original networks to form the final graphs.

We carried out gene function prediction from these net-
works. Due to class overlapping, we made three one ver-
sus the rest classification problems. The experiment setting
was as follows. The whole network was split with 90% of
the number of nodes for training and the rest for testing.
We ran this train/test split 50 times. We used mean AUC
scores over 50 runs as the performance measure. In all
following experiments, we used five eigenvectors associated
with five smallest eigenvalues. At the learning step using
MKL, we chose regularization parameter C from the set
{0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500}, and se-
lected the parameter value with the highest mean AUC score.
As for trade-off parameter c, we varied it from 1 to 0.001 and
showed AUC scores for each parameter value.

A. Gene Network

We show an application of gene function prediction from
a gene network. We created a gene network from Kyoto
Encyclopedia of Genes and Genomes (KEGG) metabolic
pathways [34]. A gene was connected to another gene if both
of them catalyze the same chemical compound, making an
undirected edge with weight 1: 1) we obtained a gene network
of 422 genes, in which 192 are for amino acid; 2) 173 are
for carbohydrate; and 3) 110 are for nucleotide metabolism.
There are 39 genes are shared between 1) and 3), 7 are shared
between 3) and each of 1) and 2).

Subtractive DisEmp version (13) of graph smoothness and
label information result is presented in Fig. 5(a). We can
see that Laplacian eigenmap followed by a margin-based
weighting, i.e., c = 1, did not give a very high classification
performance (0.86, 0.77, and 0.91). By adding some label
information (c < 1), AUC scores reached their peaks. In
particular, the scores could be very close to 1.00 for nucleotide.
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Fig. 5. Results of DisEmp on gene and PPI networks. Vertical axes are AUC scores. Horizontal axes show different c values. Different trade-off c values give
different AUC scores, and the highest performances happen at 0 < c < 1. (a) Subtractive DisEmp on gene network. (b) Additive DisEmp on gene network.
(c) Subtractive DisEmp on PPI network. (d) Additive DisEmp on PPI network.

For any problem, by selecting the most suitable parameter c
(0 < c < 1), AUC scores became be significantly higher.
Another point is that AUC scores became very high right
after c dropped from 1. This means that only a little label
information could significantly improve the discriminative
performance. As c went to very close to 0, mean AUC scores
dropped significantly and standard deviations increased. This
means that graph structure is a vital information source and
the learned label function must obey the graph structure to
certain extent, that is, it must be reasonably smooth.

The result of the additive DisEmp version (12) is presented
in Fig. 5(b). The same conclusion can be induced as in the
subtractive DisEmp version. Using only Laplacian eigenmaps
with spectral transforms gave only 0.87, 0.75, and 0.89 mean
AUC scores for the three problems. By adding some label
information into the embedding (c < 1), mean AUC scores
went up to 0.98, 0.99, and 1.00. This shows that adding label
information significantly improves its performance. This also
justifies the combination of both graph smoothness and label
information to embed graphs for a discriminative purpose. It is
also the case that one must not use very little graph informa-
tion, meaning that c should not be set close to 0. One minor
difference to the subtractive one was that additive DisEmp
tended to give a slightly more reliable performance in the sense
that standard deviations were smaller and peak performances
happened at a larger range of trade-off parameter c.

B. PPI Network

We extracted the PPI network as in [1]. In total, we obtained
a graph of 413 proteins: 1) there are 84 proteins for amino
acid; 2) 144 proteins for carbohydrate; and 3) 98 proteins for
nucleotide. The remaining proteins do not belong to these large

TABLE II

COMPARISON WITH BASELINES. c PARAMETER OF (ADDITIVE) DISEMP

IS SET BY CROSS-VALIDATION ON TRAINING DATA. THREE AUC VALUES

IN EACH CELL ARE THE MEAN VALUES FOR AMINO ACID,

CARBOHYDRATE, AND NUCLEOTIDE CATEGORIES

LMST DisEmp

Gene Network
0.87 (±0.06) 0.98 (±0.01)
0.75 (±0.08) 0.98 (±0.02)
0.89 (±0.07) 1.00 (±0.00)

PPI Network
0.54 (±0.09) 0.86 (±0.06)
0.69 (±0.10) 0.86 (±0.07)
0.52 (±0.11) 0.80 (±0.08)

categories. The performance of the subtractive DisEmp version
is shown in Fig. 5(c) and of the additive DisEmp version is
shown in Fig. 5(d).

From the tables, we can also obtain similar conclusions as
for the gene networks. Without label information embedding
(c = 1), both methods performed poorly. Take additive
DisEmp for example, AUC scores of 0.54, 0.69, and 0.52 were
reported for the three classes. However, using an appropriate
amount of label information, AUC scores reached 0.86, 0.86,
and 0.80 correspondingly.

We also observe that on the PPI network, compared to the
gene network, our proposed method gave lower means and
higher standard deviations. This is possible because PPI net-
work is more unreliable. Gene network from KEGG metabolic
pathways is, on the other hand, well studied and reliable.

C. Comparison

As DisEmp is supposed to improve from feature extraction
methods by putting label information into the embedding
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Fig. 6. Embedding of amino acid metabolism gene classification at different c parameters. The leftmost figure is the embedding of Laplacian eigenmap. The
rightmost one is the embedding with very little graph smoothness.

TABLE III

EMPIRICAL RUNNING TIMES (IN SECONDS) OF THE TWO STEPS

Step 1 Step 2

Gene network 1.61 ± 0.03 19.55 ± 6.95
PPI network 1.50 ± 0.03 10.00 ± 6.68

process, we compared DisEmp to LMST. The reason is that
LMST does not take label information into the embedding
step. It is noteworthy that LMST is a flexible learning version
of [3]–[6]. It is also a large-margin version of [7]. LMST is
supposed to be more robust to KTA-based as in [7] because
of the theoretical soundness of margin criterion.

From Table II for both data sets, we can see that DisEmp
outperforms LMST. This means that discriminative embed-
ding, compromising graph smoothness, and discriminative
information, usually gives a higher performance should the
trade-off parameter is set properly.

D. Effect of Trade-Off Parameter

We show the effect of trade-off parameter c to the embed-
ding of the graph in Fig. 6. For visualization purpose, we
used all data for training and plotted the distribution in a 2-D
space spanned by two eigenvectors with smallest eigenvalues
(excluding the trivial eigenvector, the one with a constant
coordinate for all data points). It is expected that not using
label information (c = 1), we can see that the two classes
were fused with each other. As more label information was
added, we can see that the two classes were pulled away from
each other. To the extreme c = 0, the embedding does not
respect the graph structure, the two classes were completely
separated from each other. What we expect is that some
values 0 < c < 1 should give the right trade-off between
smoothness on the graph and label information, giving the
highest prediction performance.

E. Running Times of the Steps

To demonstrate that the running time of the method depends
mainly on the running times of the step 2 (analyzed in
Section IV-B), we show the actual running times of the two
steps in Table III. We could observe that the step 2 was much
more expensive.

VII. CONCLUSION

We have proposed a method to propagate labels of nodes
on a graph by embedding the graph into a Euclidean space in
a discriminative way. By incorporating training label informa-
tion, the embedding step compromises between smoothness of
labels on the graph and discriminative information. The em-
bedding was interpreted as combining PCA and LDA feature
extractions for graphs. From the embedding space, a globally
optimal learning method that optimizes the margin for classifi-
cation was formulated. The embedding step was made efficient
by formulating it into a generalized eigenvalue problem taking
only a few eigenvectors with smallest eigenvalues. By using
an embedding step, the method is also efficient as the learning
step inherits solutions from MKL problems. Using a margin-
based objective function, the method is robust and theoretically
sound. Simulations showed that the method was beneficial on
multimodal graphs or the graphs with complicated between-
class graph structures. We showed an application of predicting
gene metabolism function from a gene network and a PPI
network. Our proposed method achieved a significantly higher
performance compared to baselines. This shows that by putting
label information into the embedding process, the distribution
becomes easier to be learned. This justifies our method to
embed the graph with label information for discriminative
tasks.
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