
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2012 1793

Latent Feature Kernels for Link
Prediction on Sparse Graphs

Canh Hao Nguyen and Hiroshi Mamitsuka

Abstract— Predicting new links in a network is a problem of
interest in many application domains. Most of the prediction
methods utilize information on the network’s entities, such as
nodes, to build a model of links. Network structures are usually
not used except for networks with similarity or relatedness
semantics. In this paper, we use network structures for link
prediction with a more general network type with latent feature
models. The problem with these models is the computational cost
to train the models directly for large data. We propose a method
to solve this problem using kernels and cast the link prediction
problem into a binary classification problem. The key idea is not
to infer latent features explicitly, but to represent these features
implicitly in the kernels, making the method scalable to large
networks. In contrast to the other methods for latent feature
models, our method inherits all the advantages of the kernel
framework: optimality, efficiency, and nonlinearity. On sparse
graphs, we show that our proposed kernels are close enough to
the ideal kernels defined directly on latent features. We apply
our method to real data of protein–protein interaction and gene
regulatory networks to show the merits of our method.

Index Terms— Latent feature kernels, latent feature models,
link prediction, sparse graphs.

I. INTRODUCTION

L INK prediction is a major problem in relational data
learning [1]. In social networks and collaborative filter-

ing, one needs to suggest links for entities for recommen-
dation. In bioinformatics and chemoinformatics, potentially
valid links such as interactions are required to speed up
experimental processes. In order to predict links in relational
data, one needs to provide a common model for both entities
and relationships (such as links) in the data. As these two types
of information are of different natures, models are difficult
to design and learn. While modeling entities is common
practice, modeling relationships is usually more difficult. For
link prediction, these relationships are interpreted differently
and reflect different semantics. While in social networks links
are usually of similarity or relatedness nature, it is not the
case elsewhere. It is the aim of this paper to deal with a more
general type of network structures to build link models and to
train them on large-sized real data.
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In principle, there are two different kinds of information
used to learn a link model for link prediction. One is the infor-
mation on entities of networks such as nodes. The methods
falling in this category usually use the information of a pair of
nodes to induce the label with or without a link [2]–[4]. Typical
examples are sequences or profile information of genes, which
are used to predict links (edges) in their networks. By using
only the information on the entities of networks, the models of
the networks assume an independent and identical distribution
of links. In other words, the structures of the links themselves
are completely ignored. This is an unrealistic assumption
in many domains where structures of networks themselves
have patterns, such as social networks [5], [6] and biological
networks [7], [8]. There are different models for networks such
as class-based [9], [10], feature-based [11], [12], or space-
based [13], [14] models that have been proven to be useful
for networks from a variety of domains of application. It is
an objective of this paper to show that network structures
themselves contain information for the task.

The second kind of information used to predict links is
the structures (topologies) of the networks themselves, with
or without node information. Similarity networks, because
of their analogy to kernels [15]–[20], can be modeled with
kernels and, therefore, there exist scalable methods. Bipartite
networks can also rely on kernels for each of their parts
together with aligning the parts [21]. Relational graphical
models [10], [22], [23] are more general, allowing the incorpo-
ration of node information with topological templates. These
models are difficult to adapt to specific network models as well
as computationally expensive. One special type of network
structure, which is of interest recently, is models with latent
features [8], [12], [24]. For this type of networks, the available
models are usually the plain latent feature models [6], [8] or
matrix-based models [13], [14]. Training these models usually
requires the generation of latent features explicitly. This is
a very time-consuming process, and usually does not obtain
globally optimal solutions. It is difficult to scale them to
networks with thousands of nodes. More details of the network
structure models can be seen in [25]. In this paper, we deal
with latent feature models of network structures.

The problem we are faced with is that networks are known
to be generated from latent features. It is the case in biological
networks where a link is a physical attachment of proteins.
These networks are nonsimilarity networks in the sense that
a link between two nodes does not mean that the nodes have
some features in common [26]. Methods for social networks
usually use similarity semantics and, therefore, are not suitable
for our problem. The features that generate the links in the
networks are usually not known for all the nodes in the
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networks, and therefore the methods using information on
network entities are not applicable. We need to use patterns
of network structures to model the networks themselves.

On our targeted applications, one key point is that these net-
works are reasonably sparse. We also show some statistics in
the application sections on real data. The good news is that, in
sparse networks, if their structures can be learned statistically,
the connectivity pattern for each node must be governed by a
small number of factors. By having a small number of different
factors for a node, there is a high chance that the links from
the node share the same factor, i.e., have the same generative
pattern. In essence, the connectivity patterns can give some
information about the global structure of the networks, making
it possible to predict new links in the networks using these
patterns (see Section IV for a formal analysis).

We provide a kernel method to the link prediction problem
using network structures that are modeled with latent features.
The overall description of the method is depicted in Fig. 1.
We design kernels to encode the structures implicitly, without
the need for generating the latent features themselves. The
idea is to give high kernel values to the pairs of links that
potentially share latent features. We show analytically how
suitable the kernel is to sparse networks. That is, given that
the networks are sparse, our defined kernels will be close
enough to the ideal kernels, which are the kernels that capture
the semantics of the model but not computable from data. By
using latent feature implicitly together with support vector
machine (SVM) classifiers [27] on top, our proposed method
has the following advantages.

1) Our method is significantly faster than other methods
that infer latent features explicitly.

2) It gives globally optimal solutions unlike other methods
that may converge to local minima.

3) It can inherit seamlessly other advantages of SVMs such
as nonlinearity.

Because of these advantages, our method gives a very high
predictive performance for link prediction problems and is
applicable to real datasets of large sizes. We also show that
the use of network structures gives higher performance than
when using basic node information because the nodes tend to
contain redundant information for the link prediction task.

The rest of this paper is organized as follows. We describe
the generative model of network structures with latent features
in Section II. We then develop our kernels for this model
and make a simulation to demonstrate the idea in Section III.
We show how suitable the kernels are for sparse networks in
Section IV. We show our application in networks with latent
features of protein–protein interaction (PPI) in Section V. We
also show an application to a nonsimilarity network type of
gene regulatory network in Section VI. We then sum up and
conclude this paper in Section VII.

II. LATENT FEATURE MODELS OF GRAPHS

A. Biological Motivation

A protein (node) can be regarded as a collection of domains
(features). A PPI is caused by a physical interaction between

(a) Input (b) Learning (c) Output

Fig. 1. Overall description of the method. Given an adjacency matrix as
input, the method embeds cells (links or nonlinks) into a feature space and
uses classification to infer new links.

two domains from the two proteins [28]. However, the knowl-
edge of domains may be incomplete, and domain–domain
interactions are not well understood. Therefore, we wish to
incorporate the domain–domain interaction knowledge in an
implicit way. Given enough links, we want to infer the features
that are shared by interacting protein pairs and play the role
of domains, where some pairs of features are likely to interact
to generate PPIs.

A key difference between these networks and social net-
works is in the pair of features (each feature from each node)
that cause a link. In PPI networks, the pair of features are the
two domains with 3-D shapes that complement each other.
They are usually different features. On the other hand, in
social networks, the pair of features are usually the same, such
as the same hobby of friends. This makes our PPI networks
nonsimilarity networks, as opposed to similarity networks in
social networks.

B. Latent Feature Models of Graphs

We describe a latent feature model of graphs, as also
appearing in [6]. In this model, a link (edge) in the graph
is generated by the relation between the latent features of the
adjacent nodes. Let A ∈ R

n×n denote the adjacency matrix of
the graph. In general, A can be any real matrix. For our special
purpose of modeling undirected networks, we assume that A
is a binary symmetric matrix. Let F ∈ R

n×d denote a binary
matrix where each row is a d-dimensional vector of latent
features. Let W ∈ R

d×d , named feature interaction matrix,
denote a real matrix encoding strengths of feature interactions.
That is, Wij encodes the strength of interaction between the
i th feature and the j th feature. We say that the i th feature
interacts with the j th feature if and only if Wij �= 0. We say
that (F , W ) is a latent feature model for A if

A = FW FT. (1)

It is possible that there are several causes for a link, but
we only record one link (existence of a link rather than mul-
tiplicity of the link). Therefore, the equality in (1) is replaced
by the element-wise operator round(min(x, 1)), where x is the
entry on the right-hand side of (1). It can be rewritten as

A = round(min(FW FT, 1)). (2)

1) Simulation Example: The idea of the latent feature model
is depicted in Fig. 2. In this example, the set of nodes have
three latent features, with the first two nodes having two
features and the rest having one feature each. The feature
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Fig. 2. FW FT → A. The adjacency of the graph (rightmost) is generated
by the three matrices: the latent feature matrix (F , leftmost), the feature
interacting matrix (W ), and the transpose of the latent feature matrix (FT ).
A black cell indicates a positive entry, and a white cell indicates a 0 entry.
In our latent feature model, the product of the first three matrices generates
the last one.

interaction matrix indicates that the first and the second
features interact, and also the third feature interacts with itself.

For the benefit of using latent feature models, we refer to
[6] for details. The following properties are observed.

1) Each entry of W generates a subgraph given F . The
overall generated graph is a superimposition of these
subgraphs. This makes the model an additive one.

2) If W is diagonal, then the generated graph can be
decomposed as a set of cliques. This is a model of
similarity graphs.

3) If W is symmetric, then the generated graph is symmet-
ric. It is usually used to encode undirected graphs.

4) If F has exactly one nonzero entry in each row (such
as the ones generated by Chinese restaurant processes),
then generating F is equivalent to clustering of nodes.

5) If the nodes can be divided into two groups, each with a
separate set of features, and W has only interactions of
features from the two different sets, then the generated
graph is bipartite.

These properties make latent feature models general gener-
ative models for graphs.

III. LATENT FEATURE KERNELS FOR LINK PREDICTION

We describe our kernel method to link prediction given the
latent feature model of the graph structures. The idea is to
use the model to derive a kernel between all pairs of the
nodes (named link kernel). We define the following terms:
a link is considered as a positive pair of nodes, whereas the
nonexistence of a link (nonlink) is encoded by a negative pair
of nodes.

The link prediction problem is then formulated as a binary
classification problem. In the end, we classify the two classes,
the link class and the nonlink class, using SVMs. The overall
strategy is shown in Algorithm 1.

The kernel between pairs is based on that between nodes
themselves (named node kernel). We first describe the node
kernel (Kn) that encodes the latent feature model, and then
the link kernel.

A. Node Kernels With Latent Features

We wish to define the similarity of two nodes as the
likelihood of having common latent features. This is inherently

Algorithm 1 Network-Structure-Based Link Prediction
Input: Adjacency matrix A.

1) Construct a node kernel Kn following latent feature
models.

2) Construct a link kernel K based on Kn .
3) Learn an SVM on K .

Output: New adjacency matrix based on the SVM.

different from similarity models where similarity means the
likelihood of reaching the other node through random walks
[5]. However, latent features are not observable, and, therefore,
we must estimate the similarity, in the form of kernels,
between nodes empirically. Knowing that nodes with common
features tend to link to common neighbors in latent feature
models, we define the basic node kernels as the ratio of
common neighbors of the nodes, as follows:

Kn = D
− 1

2 AAT
D

− 1
2 (3)

where D is a diagonal degree matrix: D ∈ Rn×n , and

Dii =
n∑

j=1

Aij . (4)

A special case of this kernel is when all the nodes have
exactly one feature (such as generated by Chinese restaurant
processes). The resulting Kn(a, b) takes either 1 or 0 for any
node a and b, depending on whether they have a feature in
common or not. An implication is that, in networks in which
latent features are expected to be sparse, Kn behaves similarly
to this extreme case, showing a good indication of common
latent features.

Given the basic node kernel, additional transformations can
be applied on top of this kernel to make new families of
kernels. Diffusion kernels and exponential kernels on top of
Kn still conserve the idea of latent features. Of course, the
higher the power we take on Kn , the looser the idea can be
kept. However, note that the most general version of spectral
transform [20] is not guaranteed to conserve the latent feature
assumption.

Note that this node kernel occurs as a term in the series
expansion of many path/walk-based kernels [5], [15], [16],
[29], [30] designed for similarity graphs. However, we find
that our proposed kernel in particular encodes the latent feature
model that is suitable for our problem.

B. Latent Features Kernels for Links

We call the link kernels built on the node kernels Kn (with
latent feature assumption) latent feature kernels. Given the
node kernel Kn , a kernel between two links is usually defined
to be the combined similarity between the pairs of nodes of the
links. In other words, the similarity between a pair of nodes
{a, b} and another one {c, d} is based on the similarity of: 1) a
to c and b to d and 2) the similarity of a to d and b to c. This
leads to two issues.

The first issue is how to define a combined similarity of two
pairs of nodes. We break this down to a fixed order of nodes,
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such as using the similarity in 1) only. This is basically the
problem of finding a map between input a and b to c and d ,
respectively. Therefore, this is a structured output learning
problem [31], [32] with the special property that the input
and output are from the same space. In the context of kernel
methods, we can use the existing joint kernels [33] to define
an ordered kernel between the two pair of nodes as follows:

K ×((a, b), (c, d)) = Kn(a, c) · Kn(b, d) (5)

or

K ×((a, b), (c, d)) = Kn(a, c) + Kn(b, d) (6)

or any other variations of joint kernels.
The second issue is how to account for the unordered nature

of the links in general. That is, the similarity is supposed to
be defined over both orders of the two pairs of nodes 1 and
2 at the same time. We follow the solution in [23] and [2]1

to break the asymmetry of the ordering by summing them up
together

K ((a, b), (c, d)) = K ×((a, b), (c, d)) + K ×((a, b), (d, c)).
(7)

It is noteworthy that the pairwise kernel as defined in [2] is
a special case with the joint kernel defined in (5). We use this
pairwise kernel in our later experiments. The interpretation of
the kernel is as follows.

Let ai and b j , respectively, be the i th and j th features of
a and b in the kernel-induced feature space of Kn . Then the
feature space of K consists of the following features for a pair
(a, b):

ai b j + a j bi . (8)

If the node kernel Kn indeed captures the likelihood of two
nodes having common features, the link kernel indicates the
chance of having two pairs of nodes with common features.
For example, when the pair {a, c} shares common features,
the likelihood of the pair {b, d}, K ((a, b), (c, d)) sharing the
same features is high.

Nonlinearity can be incorporated into this kernel, such as
by applying polynomial or Gaussian kernels on top of it.

C. Bipartite Graphs

We describe a special case of latent feature kernels for bipar-
tite graphs. We show that in this case, our kernel framework
is equivalent to structured output learning. Suppose that the
graph is a bipartite graph; so for any link {a, b}, a is in the
first part and b is in the second part of the graph. The similarity
of two links {a, b} and {c, d}, in a similar manner as before,
would be the similarity between the corresponding nodes.

However, the key difference in bipartite graphs is that the
pair of nodes in any link is ordered. It only makes sense to
define the similarity between links by a combined similarity

1The same solution is also used in [34]. However, we do not use this
formulation because of some of its drawbacks, a discussion of which is beyond
the scope of this paper.
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Fig. 3. Adjacency matrix of an incomplete graph from the simulation
example.

between nodes of the same parts. Therefore, in the same
manner, we define a kernel between the two links as

K ((a, b), (c, d)) = K ×((a, b), (c, d)). (9)

This is exactly the case of joint kernel map representation
of structured output learning with kernels [32]. One difference
is in the objective function for learning. While structured
output learning estimates the density of the training data,
our method samples negative examples and classifies the two
classes instead.

D. Demonstration

We show the idea of our kernel using the simulation
example in the previous section. Suppose that we observe an
incomplete graph of the example as in the adjacency matrix
in Fig. 3 (only 80% of the links are known). We show step
by step the idea of node kernels and latent features.

1) Node Kernel: We visualize the nodes using the node
kernel defined in (3). We use kernel principal component
analysis and plot the nodes using the first three principal
components in Fig. 4. The nodes in the figure are the nodes
of the graphs. The cyan edges are the observed links. The red
dashed edges are the missing links according to the model
in the simulation example. First, we can observe that the
cyan edges follow certain patterns of direction and endpoints.
Another point that can be observed is that the dashed red
edges follow the same patterns (endpoints lie in clusters and
edges connect the same cluster pairs). This is exactly what we
want in learning—testing data having the same distribution as
training data. What is left to be done is to keep these patterns
in some spatial representations of the edges.

2) Latent Features: We look into the model to show the
distribution of nodes with features. We label the nodes with
the same feature in shaded ellipses in Fig. 5. The ellipses
correspond to the three latent features in the example. We can
observe that the node kernel makes these nodes close to each
other. The nodes with two features lie somewhere in between
the nodes with only one of the two features.
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Fig. 4. Visualizing the graph with the node kernel. The cyan edges are the
observed links of the graph, while the dashed red edges are the missing links
according to the model in the simulation. We can observe that the red links
follow the same patterns as the cyan ones.
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Fig. 5. Positive class of links. The nodes are grouped by their common latent
features. This shows that nodes sharing more common features tend to group
together.

3) Negative Links: As shown in Fig. 4, the observed edges
and missing edges have similar patterns. However, since we
use SVM for classification, we also wish the negative class
(nonlink) not to follow the same patterns. Therefore, we show
all the edges that belong to the nonlink class in Fig. 6. We
can observe that they do not follow the patterns of the positive
class, having the same endpoints but connecting cluster pairs
different from the link classes.

The demonstration shows that our designed node kernel
successfully discovers the patterns of the link class as opposed
to the nonlink class. It tends to group the nodes with common
features close to each other as we designed. We wish to
clarify the difference of our method from other methods such
as those using Chinese restaurant processes or Indian buffet
processes (IBP) [6], [9], [12]. These methods group these
nodes together explicitly, whereas our method uses a soft
version of putting them close in a space. We believe that this
is the key to robustness, allowing the inference step to reach
globally optimal solutions and be scalable to large networks.

IV. NODE KERNELS ON SPARSE GRAPHS

Our objective is to model networks with latent feature
models. The problem is that, in reality, intrinsic features are
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Fig. 6. Set of nonlink class. Compared to the link class, the nonlink class
has different positions and orientations.

not possible to obtain, and inferring them explicitly is often
intractable. Therefore, we use network structures (topology) to
model the networks themselves. The key observation is that
these networks are sparse, as they are generated by a small
number of features, producing certain patterns on network
structures. Hence, in this section, we show that, for sparse
networks, the information we extract from network structures
is close to the information of the features that are not available.
In other words, the models we construct for the networks are
close to the true generative models of the networks themselves.

Toward this end, we define kernels that encode the similarity
between nodes if the features are fully observed, named ideal
kernels. The ideal kernels, which are what ideally the node
kernels should be but this is not possible to obtain, are the
benchmarks. As our method uses kernels with SVMs, we
formally show how close the node kernels built on network
structures could be to the ideal kernels. Given that the ideal
kernels contain information of latent features, if the node ker-
nels that we obtain are the ideal kernels, then the success of our
link kernels rests solely on the ability of the link kernels to rep-
resent the links given the node kernels. Given the way the link
kernels are defined on the basis of the node kernels, we expect
that the link kernels that we obtain are also close to those built
on ideal kernels in some sense. The main result is contained
in the four propositions. We also show here an idea of how
our defined kernels reflect the latent features of the graphs.

A. Ideal Kernels

Consider a graph generated by a latent feature model of 1.
If the model (F, W ) were observable, we would be able to
design an ideal node kernel encoding the similarity of nodes
in this graph. The semantic similarity of two nodes under
this model is the number of latent features they share, being
weighted by the importance of the features. Therefore, we
define the ideal kernels as follows.

1) Definition (Ideal Kernels): Define the set of ideal kernels
for a latent feature model (F, W ) to be K = {K ∗(D)}D , where
D ∈ R

d×d is any diagonal matrix with positive entries, and

K ∗(D) = F DFT. (10)
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A kernel value K ∗(D)i j = Fi D(Fj )
T is the weighted

sum of the number of common features between the i th and
j th nodes. However, since latent feature models are obtained
with difficulty, the ideal kernels are not available. Any kernel
defined from data with latent feature models should be close
to some ideal kernels.

Below, we will show that the node kernel we define is close
to ideal kernels for sparse networks, which are the target of
our method.

B. Relationship Between Node Kernels and Ideal Kernels on
Sparse Graphs

When the graphs are sparse (as in our applications), sparse
models are required to model them. The following propositions
show the relationship between the node kernel Kn and the
ideal kernels when the models are sparse in the sense defined
therein. Let Si denote the set of latent features of node i .

Proposition 1 (Positivity): If Si ∩ Sj �= ∅ (two nodes i and
j share at least one latent feature) and that the feature causes
both of the nodes i and j to have links to another node, then
(AAT )i j > 0, and therefore (Kn)i j > 0.

Proof: The proof can be easily seen because, when they
share a feature, they have a common nonempty neighborhood,
and therefore (Kn)i j > 0.

This shows that, if the values of ideal kernels on two nodes
are positive, the value of Kn is positive as well. This means
that, whenever the two nodes are similar (positive kernel value)
in the model, the kernel Kn can recognize that. This is useful
for sparse graphs (causing sparse kernels) in which Kn is not
sparser than any ideal kernel.

Proposition 2 (Monotonicity): Suppose that the pairs of
nodes have the same number of neighbors in the sense that
Dii D j j = DkkDll [D is defined as in (4)]. If (Si ∩ Sj ) ⊇
(Sk ∩ Sl), then (Kn)i j ≥ (Kn)kl .

The first assumption is about the equal numbers of neigh-
bors for the two pairs of nodes. The number of neighbors of
a pair of nodes is defined to be the product of the numbers of
neighbors of the two nodes. The conclusion is that, the more
latent features they share, the higher the kernel value is. This
is a property of the ideal kernels by the way in which they
are defined, showing an analogy of Kn to ideal kernels.

Proof: As (Si ∩Sj ) ⊇ (Sk ∩Sl ), the common neighborhood
of the nodes i and j is a superset of the common neighborhood
of the nodes k and l. Therefore, (AAT )i j ≥ (AAT )kl .

(Kn)i j = (AAT )i j√
Dii D j j

≥ (AAT )kl√
Dii D j j

= (Kn)kl (11)

from the definition of the node kernel in (3).

Lemma 1 (One Feature Interaction): For any latent feature
model (F , W ), there exists another latent feature model
(F×, W×) that gives: 1) the same adjacency matrix; 2) the
same set of ideal kernels; and 3) the feature interaction matrix
with at most one nonzero entry in any row and column.

In other words, there exists another mathematically equiva-
lent model giving the same ideal kernel sets and the adjacency
matrix in which each feature interacts with only one feature.

Proof: The idea of the proof is to place a nonzero Wij in
one new row and column of W× and duplicate the columns of
F when necessary to make F×, keeping the adjacency matrix
unchanged. Suppose that the (unnormalized) adjacency matrix
A is computed by

A = FW FT =
∑

i j

Wi j F·i (F· j )
T (12)

where F·i is the i th column of F .
Let I = {(i, j)} that Wij �= 0. Then

A =
∑

(i, j )∈I

Wi j F·i (F· j )
T. (13)

We then construct the F× and W× by sequentially append-
ing the feature columns and feature interaction matrix values
in (13) as follows.

1) Mark all the indices in I as available.
2) Initialize F× and W× to empty matrices.
3) Go to the next available index in I , pick the pair (i, j),

and then continue as follows.

a) If i = j , meaning that wii indicates a self-
interacting feature, then append the feature vector
F·i at the end of the already constructed F×.
Append a new row and column of W× with the
only nonzero element Wij on the diagonal of W×.
Mark the index of Wij in I unavailable. Repeat the
process from step 3.

b) If W is symmetric (A is symmetric), then Wij =
w j i . Append the feature vectors F·i and F· j to
the end of F×. Suppose that the size of W× is
k, then append two new rows and columns of W×,
setting the values of W×

k+1,k and W×
k,k+1 to be Wij .

Mark the indices of Wij and W ji in I unavailable.
Repeat the process from step 3.

c) If W is not symmetric, then append the features
as the symmetric case to F×. For W×, only one
nonzero element is added to W×

k,k+1. Mark the
index of Wij in I unavailable. Repeat the process
from step 3.

After all indices in I are marked unavailable, we have

F×W×(F×)T =
∑

(i, j )∈I

Wi j F·i (F· j )
T = FW FT = A. (14)

Also, each row or column of W× has at most one nonzero
entry by the way in which W× is constructed. Since the set
of columns of F× is the same as F’s, the set of ideal kernels
is the same (only different by feature weighting).

Hence, we have constructed a new model with a feature
which either interacts or is interacted with at most one feature.
This is to say that there is a mathematically equivalent model
in which each feature only interacts with one another feature.
We use this fact to facilitate our sparsity reasoning as follows.

Proposition 3 (Ideal Condition): Kn is an ideal kernel
(Kn ∈ K) if the row vectors of W FT are pairwise orthogonal.
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Proof: When the row vectors of W FT are pairwise
orthogonal, then W FT × (W FT )T is diagonal. Denote D =
W FT × FW T. Then

Kn(A) = FW FT × FW T FT = F DFT . (15)

Since D is diagonal with nonnegative entries, Kn ∈ K.
Corollary 1: If W is the inverse of a mixing matrix of an

independent component analysis model [35] for FT and W FT ·

1 = 
0, then Kn ∈ K.


1 denotes the vector of all 1 and 
0 denotes the vector of
all 0. The corollary comes from the fact that independent
components are uncorrelated and, in this case, orthogonal.

Corollary 2: If each node has only one latent feature, such
that F is generated by a Chinese restaurant process or any
class-based model in which W has only one nonzero entry in
each row or column (guaranteed by Lemma 1), then Kn ∈ K.

The corollary comes from the fact that W FT has only one
nonzero entry in each column, and therefore any pair of row
vectors would have no nonzero entries in common. This makes
row vectors of W FT uncorrelated.

When the model is sparse, Kn is close to an ideal kernel as
follows. Let E = FT F . Then Elk = (F·l)T F·k is the number
of nodes having both features l and k. When l �= k, we expect
Elk to be small in comparison with Ell and Ekk for sparse
models. In other words, E is diagonally dominant. We show
the relationship between the diagonal dominance of D and the
sparsity of F as well as how close Kn is to ideal kernels.

Given Lemma 1, we assume that Wil and W jk are the
only nonzero entries in rows i and j . Recall that Kn =
F DFT = FW EW T FT . Since the entries of W are scalars,
Dij = Wil W jk Elk means that D2

i j /(Dii D j j ) = E2
lk/(Ell Ekk).

When F is sparse, the off-diagonal elements of E are much
smaller than diagonal ones (diagonally dominant). The same
thing can be said for D. This means that D is as diagonally
dominant as E . We show quantitatively how close D is to an
ideal kernel.

Proposition 4 (Approximation): When the model is sparse

in the sense that (
∑

i �= j |Wil W jk Elk |p)
1
p ≤ δ for some small

δ ∈ R, p ≥ 0, there exists an ideal kernel F D̂FT that is close
to Kn in the sense that ‖ D − D̂ ‖p≤ δ.

In the condition (
∑

i �= j |Wil W jk Elk |p)
1
p , an entry

Wil W jk Elk is the weighted number of nodes having the two
features l and k (should also be small for sparse models,
l �= k implying i �= j ). ‖ · ‖p is the p-norm of a matrix.

Proof: We construct D̂ as a diagonal matrix with D̂ii =
Dii = W 2

il Ell . Given that Dij = Wil W jk Elk , then

‖ D − D̂ ‖p =
⎛

⎝
∑

i �= j

|Dij |p

⎞

⎠

1
p

=
⎛

⎝
∑

i �= j

|Wil W jk Elk |p

⎞

⎠

1
p

≤ δ. (16)

This shows that the sparser the model, the closer D is to ideal
kernels.

When a model is sparse in the sense that each node has very
few latent features, each latent feature interacts with another
feature (by Lemma 1) and Kn should be close to the ideal
kernel F D̂FT since F D̂FT is linear in D̂.

(a) (c)(b)

Fig. 7. Simulation example networks with latent features. A circle represents
a group of five nodes with the same latent feature sets. An edge between
circles is a set of links from all nodes in one circle to all in the other one.
(a)–(c) Networks become denser.

TABLE I

LINK PREDICTION RESULTS ON SIMULATION NETWORKS

WITH DIFFERENT SPARSITY LEVELS

Network Mean AUC score

(a) 0.979 ± 0.020

(b) 0.903 ± 0.026

(c) 0.843 ± 0.044

All these properties make the kernel Kn a good approxi-
mation of ideal kernels in sparse models. Sparse models are
suitable for our applications in sparse networks (nodes with
small degrees). We elaborate more in the applications section.

C. Simulation

We conduct a simulation to show that, when the network is
sparse in the sense that a node has a small number of latent
features and each feature only interacts with one another, then
our kernels can capture well the similarity in the shared latent
features. By this we mean that our defined kernels are close
enough to ideal kernels, which are supposed to give perfect
performance. The simulation networks are generated according
to the topology in Fig. 7.

The experiment was set up as follows. We sampled 50% of
the links for training and used the rest for testing. We used
our method, and we report the average area under the curve
(AUC) scores of 50 runs in Table I.

We can observe that, when the network was generated
by the simple model in (a), our method gave perfect AUC
scores. As the models became denser, our method gave poorer
performance. This might be due to the fact that our proposed
kernels become further from the ideal kernels. Our simulation
suggests that our kernels are good for very sparse models of
networks (that generate sparse networks).

V. APPLICATION: NETWORKS WITH LATENT FEATURES

Our targeted application is to model network structures with
the latent feature models. Even though the model includes
similarity networks as special cases, our main target is non-
similarity networks such as PPI networks. An experiment in
the following subsection verifies that PPI networks are indeed
nonsimilarity networks. There are other networks studied in
bioinformatics but they are too sparse and not large enough to
study structures statistically.
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TABLE II

NUMBER OF NODES AND LINKS FOR DIFFERENT

SUBNETWORKS WITH VARYING MINIMUM DEGREE m

m
Yeast Fruit-fly

Nodes Links Nodes Links

1 4762 21 836 6644 21501
2 3775 20 849 4783 19640
3 2891 19 139 3397 16944
4 2260 17 315 2539 14452
5 1811 15 582 1923 12072
6 1507 14 112 1403 9568
7 1245 12 607 1098 7796
8 1046 11 255 713 5243
9 890 10 064
10 756 8924

We used the PPI networks of yeast and the fruit fly from
the DIP database [36] because of their largest hand-curated
networks available. For statistical study, we focused on only
the largest connected component of the m-core of the network
(the largest connected subnetwork with all the nodes having
the degrees of m or more). In our experiments, we show the
results for all the values of m from 1 to 10 (8 for the fruit fly).
We show in Table II the sizes of the data. We will show later
on that the other methods based on latent feature inference do
not scale to these sizes.

Real PPI networks are sparse: less than 20% of the nodes
in yeast and none in the fruit fly have degrees of 10 or more.
This is the reason for sparsity analysis in Section IV.

For each subnetwork, we sampled the nonlink class data
from arbitrary pairs of nodes that are not known to have any
link between them. The number of nonlinks is the same as the
number of links to make the data balanced. This process was
repeated five times. We showed the average AUC score of 20
random train/test splits with the ratio 90 : 10. We used SVM
(soft margin parameter C = 0.001, but the results were the
same for a range of C from 0.0001 to 0.1) as the classifier
for our link kernels. We first show the appropriateness of
the assumption of latent features as opposed to the usual
assumption of similarity. We then show the time required to
build one model to clarify the difference in real computation
time between our method and IBP [6] (with parameter α = 3,
which we found to be a good tradeoff to be able to train on our
smallest datasets and induce a model with a sufficient number
of latent features). We then show the performance of link
kernels in link prediction. We also compare the performance
of link kernels to that of sequence-based link prediction to
show the advantage using network structures.

A. Latent Feature Versus Similarity

Fig. 8 shows the fitness of the latent feature model on yeast
PPI networks as opposed to the similarity model. To compare
the models, i.e., the assumptions of similarity and latent fea-
tures, we use the simple nearest neighbor classifiers, resulting
in the two following methods.

1) SimNN for similarity assumption: Using the direct
method [7]. The more walks of length two between the

0 2 4 6 8 10 12
Minimum degree of nodes

A
U
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SimNN
LK−NN

0.65

0.7

0.75

0.8

0.85

0.9

Fig. 8. Latent feature versus similarity assumption. AUC of the direct method
for link prediction (vertical) at different minimum degree of the network
(horizontal axis).

nodes, the more likely they have a link between them.
Using the normalized adjacency matrix, this method
happens to be equivalent to using the node kernels and
predicting links based on the similarity (kernel value) of
the two nodes.

2) LK-NN for latent feature assumption: The latent feature
kernel is used as the similarity measure of pairs of nodes.
A pair of nodes takes the label of its closest pair of nodes
with a known label (link or nonlink).

Fig. 8 shows significantly different AUC scores of the two
methods on the yeast PPI networks. LK-NN was usually much
higher (around 0.1 and more). It shows that the latent feature
model was more suitable to the PPI networks than the con-
ventional similarity one. The exception was at the subnetwork
with the minimum degree of nodes of 1. Since we were using
only network structures, the nodes with degree 1 may not
contribute to the network structure in these models. Therefore,
results for the subnetworks with nodes with larger degrees
demonstrated the reasonability of the assumptions used. For
this reason, the latent feature assumption was more reasonable
than the similarity assumption here, and the methods for
similarity networks were not recommended to be used.

B. Execution Time

We show execution time required to build one model using
our link kernels in Fig. 9. To compare with IBP, we also
show the execution time in the process of building one model
before it burns in in Fig. 10. Since IBP requires a long
computation time, we only show the execution time for the
smallest subnetwork (minimum degree of 10 with only 756
nodes), which is supposed to require the least time among all
the subnetworks.

We can see that the link kernels took less than 90 s for the
smallest subnetwork, which increased to 480 s for the largest
subnetwork of 4762 nodes. On the other hand, IBP took many
hours for the smallest subnetwork of 756 nodes and did not
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Fig. 9. Time required to build one model using link kernels (in seconds)
at subnetworks with different minimum degrees. Note that, for the smallest
subnetwork, the execution time is less than 90 s.
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Fig. 10. Time to train an IBP model of the smallest subnetwork with m = 10.
The horizontal axis is the log-likelihood obtained from the model during the
training process as a function of time (vertical axis).

burn in on larger ones within one day. The reason is that
IBP uses sampling methods that are usually very expensive
computationally. We conclude that our method can save by
many orders of magnitude the time to train one model, making
training on networks with thousands of nodes possible. This
is a key advantage of our kernel method.

C. Link Prediction Results

We compare the prediction ability of our method using
link kernel to the baseline of using IBP as in [6, Fig. 11].
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Fig. 11. Link prediction results on the yeast PPI network. AUC of link
prediction with different methods (vertical) at different minimum node degrees
of the network (horizontal axis). Note that IBP does not scale with larger
datasets, and hence the results of IBP are unavailable.

The results are for different subnetworks with different min-
imum degrees. For small minimum degrees, the subnetworks
have higher coverage on the whole network, while the large
minimum degrees will extract denser parts of the network,
making statistical inference on this part more reliable. We
show two versions of our link kernels: linear kernels and
Gaussian kernels (K (x, z) = exp(−γ |x − z|2) with γ = 2).
The incomplete results of IBP were due to the fact that the
experiments took too much time (more than one day) to train
one model.

We can read from yeast’s results in Fig. 11 that lin-
ear kernels had similar AUC scores with IBP. However,
when using the nonlinear version of Gaussian kernels, AUC
scores were significantly higher. We conclude that our kernel-
based method provide a significantly higher AUC scores
than IBP. One surprising result was that even using net-
work topology only, we achieved high AUC scores close to
0.9. These scores were much higher than random predic-
tion. Given that the PPI networks are known to be noisy
and incomplete, this experiment shows that there are pat-
terns for the topology of the PPI networks. This result
also shows that our method is effective in encoding these
patterns.

Similarly, we can see from the results on the fruit fly
PPI network in Fig. 12 that our method based on kernels
outperforms IBP. The AUC scores on fruit fly PPI networks
are much lower than on yeast because of the fact that fruit fly
networks are sparser, involving more proteins and there are no
proteins with degrees of 10 or more.

D. Comparison to Sequence-Based Prediction

As opposed to using network structures, traditional methods
use node information such as protein sequences. Therefore, we
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Fig. 12. Link prediction results on the fruit fly PPI network, showing the
AUC of link prediction with different methods (vertical) at different minimum
degrees of the network (horizontal axis). IBP results are available only for
the 8-core.

also compared our method to spectrum kernels on sequences
to predict links. The results are not shown in Figs. 11 and
12 because their ranges are different. The highest AUC score
was 0.71 ± 0.008 for yeast and 0.65 ± 0.016 for fruit
fly. We observe that network-based methods gave higher AUC
scores, being statistically significant (with t-tests at 0.01 level).
This might be due to the fact that kernels based on sequences
contain too much redundant information, since sequence-
based kernels use all k-mers across the protein sequences.
Sequence-based kernels are redundant because only small
parts may determine the interaction ability of proteins to
others.

VI. APPLICATION: OTHER NONSIMILARITY NETWORKS

We extend our application domain to another type of non-
similarity network: the gene regulatory network of E. coli [37].
This network has the largest number of links among all gene
regulatory networks and is well studied. Regulatory networks
are not well known to have latent features that generate the
network structures. They do not fit into any other categories
of similarity or bipartite networks. The regulatory network of
E. Coli is not too sparse, and it is a scale-free network.

We carried out experiments in the same manner as in the
previous section for the PPI network. We extracted the largest
connected components with the minimum degrees m. We show
the sizes of our data in Table III. We then used SVM with
default parameters as in the previous section to train the
classifiers for out method.

A. Latent Feature Versus Similarity

Given that gene regulatory networks are not known to be
any kind of networks that are usually used for link prediction,

TABLE III

NUMBER OF NODES AND LINKS FOR DIFFERENT SUBNETWORKS

OF E. COLI GENE REGULATORY NETWORK WITH VARYING

MINIMUM NODE DEGREES m

m Nodes Links

1 1437 3901

2 1064 3528

3 678 2763

4 446 2091

5 239 1302
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Fig. 13. Latent feature versus similarity assumption on gene regulatory
networks. AUC of the direct method for link prediction (vertical) is shown at
different minimum degrees of the network (horizontal axis).

we wish to see how appropriate and general our model is
compared to the most common similarity network type. We
use the simple direct method as before to highlight the merit
of similarity measures. We show the average AUC scores in
Fig. 13. We can observe that the similarity network assumption
gives very low AUC scores, almost close to random. Our
method, on the other hand, gives very high AUC scores. We
conclude that, while the latent feature model trained with
our method is flexible for this network, it is not the same
for similarity networks. In fact, gene regulatory networks are
closer to bipartite networks in which there is a set of common
regulators that regulates most other genes, including them-
selves. Therefore, they have some bipartite structures in them,
among other links, that make them not bipartite networks. This
explains why our network model is flexible enough to capture
this type of structure whereas similarity networks totally fail to
do so.

B. Execution Time

We also compared the execution times of our method to
the method that explicitly infers the latent features of IBP.
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Fig. 14. Link prediction results on E. Coli gene regulatory network. AUC of
link prediction with different methods (vertical) is shown at different minimum
degrees of the network (horizontal axis). IBP results are missing due to their
large time consumption.

Our method took less than 2 s on average, whereas IBP
cost 5097 ± 1021 s on the smallest subnetwork with the
minimum degree of nodes of 5. Our method is, therefore,
significantly faster. The same argument can be applied, and
IBP uses sampling methods that are computationally very
expensive. Our method, however, only uses convex quadratic
programming, and therefore is very efficient.

C. Link Prediction Results

We also compare the link prediction ability of our method
with the link kernel to the baseline of using IBP in Fig. 14.
We follow the same settings as in the previous section. We
also compare the linear and Gaussian kernels to IBP. We
reach similar conclusions as in the networks with known
latent features in the previous section. The performance of
our method becomes higher in subnetworks with a higher
minimum degree (m). It is noteworthy that our method takes
only a very small fraction of time compared to IBP.

It is surprising that methods using the latent features
implicitly or explicitly gave very high AUC scores on these
subnetworks (0.9 or more). This means that latent feature
models are general enough to capture the structure of this
network. That is, the gene regulatory network is likely to have
latent features as well.

VII. CONCLUSION

We have studied the problem of predicting new links
using network structures in a more general type of networks.
Specifically, we studied the networks that can be modeled
by generative processes with latent features. This is a more
general model of networks than the usually assumed similarity
networks in most of the applications. In order to model real
networks of medium or large size, we used kernels and cast the

problem as a supervised learning one, inheriting the optimality,
efficiency, and nonlinearity of the kernel framework. We
showed the suitability of the kernels on sparse networks. We
applied our methods to two types of networks: the networks of
PPIs where latent features are expected and the networks for
gene regulations, which are known not to belong to similarity
or bipartite networks. The results showed that our kernel-
based method gave a higher performance than the direct latent
feature inference method of IBP. Our method was also many
orders of magnitude faster, and scaled to the sizes of real
networks, unlike IBP. It was also shown that network structures
give higher predictive performance than node information. We
conclude that for sparse networks with latent feature models,
our method is able to utilize the relevant information in
network structures to give significantly faster execution time,
more scalable solutions, and higher performances.
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