
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 7, JULY 2014 1407

Selecting Graph Cut Solutions via Global Graph Similarity
Canh Hao Nguyen, Nicolas Wicker, and Hiroshi Mamitsuka

Abstract— Graph cut is a common way of clustering nodes on similarity
graphs. As a clustering method, it does not give a unique solution
under usually used loss functions. We specifically show the problem in
similarity graph-based clustering setting that the resulting clusters might
be even disconnected. This is counter-intuitive as one wish to have good
clustering solutions in the sense that each cluster is well connected and
the clusters are balanced. The key property of good clustering solutions
is that the resulting graphs (after clustering) share large components
with the original ones. We wish to detect this case by deriving a graph
similarity measure that shows high similarity values to the original
graph for good clustering solutions. The similarity measure considers
global connectivities of graphs by treating graphs as distributions in
(potentially different) Euclidean spaces. The global graph comparison
is then turned into distribution comparison. Simulation shows that the
similarity measure could consistently distinguish different qualities of
clustering solution beyond what could be done with the usually used loss
functions of clustering algorithms.

Index Terms— Graph cut, graph embedding, graph similarity,
Hilbert–Schmidt information criterion.

I. INTRODUCTION

The problem is that clustering algorithms might produce many
solutions with the same optimality. The loss functions of clustering
algorithms might not be able to detect the bad solutions due to their
limitations. It is particularly the case in graph-based clustering [4],
[9], [10], [15], [21]. The loss functions are usually the cut quality
involving a small cut value (total weight cut) and the balance of
clusters. However, the gap is that the small cut value does not directly
lead to the well connectedness within clusters as desired. Detecting
a cluster being connected or not is computationally expensive to be
used as a loss function in clustering.

To simplify the discussion, we limit to the case of cutting a graph
into two clusters. We show the cases in which the optimal solutions,
if they were actually returned from the clustering algorithms, are
not unique. Hence, even if we suppose that the algorithms work as
desired, the solutions might have different qualities. For our problem
setting of graph-based clustering, an optimal solution of the problem
of finding two clusters might have disconnected clusters. Graph cut
methods in computer vision [2], [3], [8], [19], while having the
same objective of coherent clusters, require the clusters to follow
supervised information rather than only the balance of clusters in
graph cut-based clustering setting.

We wish to be able to select the good solutions from many equally
optimal solutions of graph cut, two-cluster clustering algorithms using
the usual criteria that clustering algorithms use. This is not supposed

Manuscript received November 18, 2012; revised August 20, 2013; accepted
November 21, 2013. Date of publication December 12, 2013; date of current
version June 10, 2014. This work was supported in part by KAKENHI, MEXT,
Japan, under Grant 24300054.

C. H. Nguyen and H. Mamitsuka are with the Bioinformatics Center,
Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
(e-mail: canhhao@kuicr.kyoto-u.ac.jp; mami@kuicr.kyoto-u.ac.jp).

N. Wicker is with the UFR de Mathématiques, Université Lille 1, Villeneuve
d’Ascq 59655, France (e-mail: nicolas.wicker@math.univ-lille1.fr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2013.2292975

to be used to replace the clustering loss functions, but to address
the issue, which is failed to be accommodated by the graph cut loss
functions. Finally, we wish to find a criterion that, even though it
might be too expensive to be used as a clustering objective function,
should be more expressive to distinguish some bad solutions that are
failed to be recognized by the usual loss functions. A problem of
graph cut with spectral clustering was illustrated in [20]. However,
this brief does not give a single criterion to compare clustering
solutions. It is possible to use this criterion to multicluster clustering
problem. However, as one has to combine the criterion on more
clusters, like other criteria, it is harder to analyze why it should work
or fail.

The usual objective of clustering is to find clusters, which are
balanced in size and well connected within each cluster. Hence, a
good clustering solution, in terms of the objective function, should
have two large clusters that each shares many edges with the original
graph. On the other hand, a bad one might have clusters of uneven
sizes, and there might be disconnected clusters. As the former case
is cut with a smaller value in the sense of having a less number of
connected components, the resulting graph after cut is closer to the
original one than that of the latter case. To distinguish the two cases,
we need to design a graph comparison method that considers global
connectivities of graphs. Specifically, we need a similarity measure
that makes the former case more similar to the original graph than
the latter case is. This is a new graph similarity criterion that has not
been addressed before.

We formalize this requirement as the problem of comparing labeled
graphs with the same node set. The problem is stated as follows.
Graph Gi = (V, Ei), ∀i = 1, 2, . . . with the node set V fixed. We
wish to be able to compare the graphs, such as a similarity function
between Gi and G j , considering global connectivities of the graphs.

There are many ways to compare graphs proposed in the literature.
Almost all of them are based on the parts of the graphs as features
for comparison. The examples include walks, paths [12], [16], and
subgraphs of the graphs [5]. The idea behind all these methods is
that the properties of a graph are determined by its parts separately.
Therefore, these methods do not reflect the topology of a graph as a
whole, such as connectivity. Another line of work is based on graph
edit distance [6]. However, in our special case of graphs with the
same node set, edit distance becomes the number of different edges.
The role of each edge is different for the global connectivity of the
whole graph (for example, some edges are bridges while others are
not). In this case, the difference of a bridge in the graph would be
more than other edges, while edit distance treats them all equally. We
wish to be able to incorporate graph connectivity into our comparison
as well. There are some other works using graph Laplacians [24] for
feature extractions.

In this brief, we first show the conditions in which the undesirable
solutions with disconnected clusters might be obtained in even the
optimal clustering solutions in graphs. We propose to use graph
Laplacians to compare graphs with the same node set to reflect its
global connectivity. As graph Laplacians allow embeddings of graphs
into Euclidean spaces, we instead compare the embeddings. Hence,
the method is called graph embedding-based graph comparison.

2162-237X © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1408 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 7, JULY 2014

We also show extensions of the comparison using eigendecomposi-
tions of the graph Laplacians. We show the properties of the compar-
ison to observe the importance of edges toward global connectivity of
the whole graph, which is different from edit distance where all the
edges have an equal weight. We provide some experiments to show
that our similarity measure of graphs can detect the good solutions
from the bad one in two-cluster clustering problem.

II. PROBLEM WITH GRAPH CUT-BASED CLUSTERING

It is commonly known that, even though the clustering algorithms
return the optimal solutions according to their loss functions, there
might be undesirable solutions. Following are some undesirable
properties of the solutions.

1) There are many different solutions. This is a result of the
nonconvexity of the loss functions.

2) For graph-based clustering, some clusters are not connected.

This section aims to provide the conditions in which the solutions
are not desirable. This is the problem we are trying to solve.

One of the common graph-based clustering algorithms is based on
graph cut [4] as follows. Given a graph G = (V, E), a graph cut
problem is to divide the set of nodes into two subsets that: 1) are
even in size or volume and 2) have a small number of edges between
the two subsets. Let X̄ denote the complement of any set X in V .
One looks for a cut (C, C̄) (C ⊂ V) that minimizes the loss function

l(C, C̄) = cut(C, C̄)

min(s(C), s(C̄))
(1)

where s(·) could be the total degrees (volume) or total number of
nodes (size) of a set. The cut function in the numerator can be
instantiated as cut(C, C̄) = ∑

(i, j)∈E,Vi∈C,Vj∈C̄ wi j . In our setting,
we allow s to be any positive modular function (s(C∪D)+s(C∩D) =
s(C)+s(D), ∀C, D ⊆ V). Examples of s include the commonly used
normalized Cheeger cut and ratio Cheeger cut. There are other loss
functions for graph-based clustering [10], [21]. These loss functions
have different drawbacks, such as favoring more unbalanced clusters
[4]. Further discussion is out of the scope of this brief.

The problem with graph cut for clustering using the above loss
functions is that the cut (C, C̄), which minimizes the loss functions l
might be disconnected. The following theorem shows the necessary
and sufficient conditions for this to happen.

Theorem 1: Suppose that (C, C̄) is a cut that minimizes the cost
function in (1). Suppose that the C-induced subgraph G′ of G is
disconnected, then the following conditions hold:

1) s(C) < s(C̄);
2) for D as any union of the nodes in any set of maximally

connected components of G′, then

l(C, C̄) = l(D, D̄).

Proof: Let D′ be the complement of D in G′, then
D ∪ D′ = C , D ∩ D′ = 0 and D̄ = C̄ ∪ D′. Because D is a
set of maximally connected components, D is not connected to D′
in G. Then

cut(C, C̄) = cut(D, D̄) + cut(D′, D̄′).

Proving the first condition by contradiction. Suppose that
min(s(C), s(C̄)) = s(C̄) < s(C), meaning that the larger cluster
is disconnected.

Without loss of generality, assume that s(D) ≥ s(D′). Then, there
are two cases. In both cases, we use the assumption that C minimizes
the loss function in (1).

Case 1: s(D) ≤ s(C̄) + s(D′), then

cut(C, C̄)

min(s(C), s(C̄))
≤ cut(D, D̄)

min(s(D), s(D̄))
= cut(D, D̄)

s(D)

cut(C, C̄)

min(s(C), s(C̄))
≤ cut(D′, D̄′)

min(s(D′), s(D̄′))
= cut(D′, D̄′)

s(D′) .

Then, using the weighted average of fractions, we have

cut(C, C̄)

min(s(C), s(C̄))
≤ cut(D, D̄) + cut(D′, D̄′)

s(D) + s(D′)

= cut(C, C̄)

s(C)

<
cut(C, C̄)

s(C̄)

= cut(C, C̄)

min(s(C), s(C̄))
.

This is a contradiction.
Case 2: by the definition of C , we have s(D) > s(C̄) + s(D′).

Then

cut(C, C̄)

min(s(C), s(C̄))
≤ cut(D, D̄)

min(s(D), s(D̄))

⇔ cut(D, D̄) + cut(D′, D̄′)
s(C̄)

≤ cut(D, D̄)

s(C̄) + s(D′)
.

As all components in the inequalities are nonnegative, the second
inequality does not hold, leading to a contradiction. Both cases lead
to contradictions. Hence, the larger cluster is not disconnected. The
first condition is proved.

Second condition:

min(s(C), s(C̄)) = s(C)

= s(D) + s(D′)
= min(s(D), s(D̄)) + min(s(D′), s(D̄′)).

Then

cut(C, C̄)

min(s(C), s(C̄))
≤ cut(D, D̄)

min(s(D), s(D̄))

cut(C, C̄)

min(s(C), s(C̄))
≤ cut(D′, D̄′)

min(s(D′), s(D̄′))
cut(C, C̄)

min(s(C), s(C̄))
≤ cut(D, D̄) + cut(D′, D̄′)

min(s(D), s(D̄)) + min(s(D′), s(D̄′))

= cut(C, C̄)

min(s(C), s(C̄))
.

This shows that all the three inequalities above must be equalities,
then

cut(C, C̄)

min(s(C), s(C̄))
= cut(D, D̄)

min(s(D), s(D̄))
.

The implication of the theorem is that, given any optimal graph
cut that produces a disconnected cluster, equally optimal solutions
can be obtained by cutting only some of the maximally connected
components of the disconnected cluster.

Theorem 1: Given (D, D̄) and (D′, D̄′) are two optimal solutions
of (1). If D ∩ D′ = ∅, cut(D, D′) = 0, and s(D)+s(D′) ≤ 1/2s(V),
then (D ∪ D′, D̄ ∩ D̄′) is also an optimal solution of (1).

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 7, JULY 2014 1409

Proof:

cut(D, D̄)

s(D)
= cut(D′, D̄′)

s(D′)

= cut(D, D̄) + cut(D′, D̄′)
s(D) + s(D′)

= cut(D ∪ D′, D̄ ∩ D̄′)
s(D ∪ D′) .

Thus, the combined cut (D ∪ D′, D̄ ∩ D̄′) is also optimal.
This theorem gives a way to combine the optimal solutions to make

new solutions without losing its optimality. It also shows that it is
possible to obtain the optimal solutions with a disconnected cluster.

We conclude that the type of loss functions as in (1) cannot
guarantee the well connectedness of clusters. We aim to fix this case.

III. GRAPH EMBEDDING-BASED GRAPH COMPARISON

To consider graph connectivity, we use the embeddings of graphs
that reflect their global connectivities. We propose to embed the
graphs into Euclidean spaces and compare them. We use graph
Laplacians [7] for embedding and Hilbert–Schmidt information cri-
terion (HSIC) [13] for graph comparison. We first review the HSIC
to be used later in our similarity measure of graphs. We then propose
our graph embedding-based similarity measure (ges), its equivalent
formulation and its extensions.

A. HSIC

HSIC is a measure of statistical independence between the
two random variables. Let x be a random variable in the
domain X and z is another random variable in Z. Let F and
G be the feature spaces on X and Z with kernels k : X × X → R

and l : Z×Z → R, respectively. Drawing samples (x, z) and (x ′, z′)
from a joint probability distribution p(x,z), then HSIC is computed
via kernel functions as

HSIC(p(x,z),F,G) = Ex,x ′,z,z′ [k(x, x ′)l(z, z′)]
+Ex,x ′ [k(x, x ′)]Ez,z′ [kz,z′]
−2Ex,z

[
Ex ′ [k(x, x ′)]Ez′ [k(z, z′)]]. (2)

Empirical estimation of HSIC is as follows:

HSIC(p(x,z),F,G) = 1

(n − 1)2 trace(KHLH) (3)

where H is the centering matrix.
Considering the nodes of a graph in its embedded space

as a set of samples of a random variable. Specifically,
K1 is a kernel for a sample of a random variable, and K2 is a kernel
for a sample for another variable. HSIC between the two variables,
intuitively the correlation information between the two embeddings
of the same node set, can be computed as

HSIC(G1, G2)
def= HSIC(p(K1,K2))

= 1

(n − 1)2 trace(K1K2).

(Ki are already centered as a property of eigenvectors of graph
Laplacians).

B. Graph Embedding-Based Graph Comparison

To reflect the global connectivities of graphs, we use graph
Laplacians. The procedure has two steps as follows.

Step 1 (Graph Embedding): We use graph Laplacians to embed
nodes of a graph into an Euclidean space. There are many ways to

embed nodes for different purposes of learning methods on the nodes
[22]. For the moment, we just use the inverse of graph Laplacian as
the kernel for the node set

Ki = L−1
i . (4)

Step 2 (Graph Comparison): The kernel encodes a sampling
distribution; hence the problem of comparing graphs becomes the
problem of comparing distributions. We specifically use HSIC as a
similarity measure (to be specific, a kernel) between the distributions.
We define our graph embedding-based graph comparison with the
following similarity measure.

Definition 1: The similarity of two graphs ges is defined to be

ges(G1, G2)
def= (n − 1)2 · HSIC(K1, K2)

= trace(K1K2). (5)
For HSIC being a kernel between the distributions, our similarity

measure is also a kernel (a similarity measure) between the graphs.
Other similarity measures or dissimilarity measures such as Euclidean
distance between the graphs can be constructed on the top of this
kernel as usual.

Similarly, the distance between the two graphs can be defined based
on ges(G1, G2), called graph embedding-based distance (ged), as

ged(G, G′) = √
ges(G, G)+ges(G′, G′) − 2ges(G, G′). (6)

C. Spectral Computation and Extensions

It is known that there are many ways of defining kernels from graph
Laplacians by spectral transforms. We show that for all the kernels
obtained by spectral transforms, there is a formulation to compute
the graph similarity measure using eigenvalues and eigenvectors of
the graph Laplacians, as in [23]. Moreover, the formulation allows
natural extensions of the similarity measure that are not available
from the distribution comparisons.

Suppose that the graph Laplacians are eigendecomposed
as L1 = U D(λ)U T and L2 = V D(μ)V T , in which
D(x) denotes a diagonal matrix with diagonal entries are the
vector x . It is known that there are many kernels built on graph Lapla-
cian with spectral transform g(λ), then K1 = U D(g(λ))U T [22]. For
example, the kernels K1, K2 as in (4), g(λ) = 1/λ (for λ > 0, and
g(0) = 0).

Theorem 2: Suppose that the two graphs G1 and G2 define a
joint distribution of nodes, denoted as p(G1, G2), then the similarity
defined in (5), as a HSIC between the two distributions defined by K1
and K2, is computed with their eigenvalues (λi , μ j) and eigenvectors
(ui , v j) as follows:

ges(G1, G2) =
n∑

i, j=1

g(λi) · < ui , v j >2 ·g(μ j). (7)

Proof:

ges(G1, G2) = trace(K1K2)

= trace
{
U D(g(λ))U T · V D(g(μ))V T }

= trace
{

D(
√

g(λ))U T · V D(g(μ))V T ·
U D(

√
g(λ))

}

= trace
{

D(
√

g(λ))U T V D(
√

g(μ)) ·
D(

√
g(μ))V T U D(

√
g(λ))

}

= trace
{

D(
√

g(λ))U T V D(
√

g(μ)) ·
[D(

√
g(λ))U T V D(

√
g(μ))]T }

. (8)

Let M = D(
√

g(λ))U T V D(
√

g(μ)), then Mij =√
g(λi)u

T
i v j

√
g(μ j). Note that trace(M MT) = ∑

i, j M2
i j ,

1410 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 7, JULY 2014

then

ges(G1, G2) = trace(K1K2)

= trace(M MT)

=
n∑

i j

g(λi)· < ui , v j >2 ·g(μ j). (9)

This completes the proof.
Note that the graph Laplacian-based comparison has the form

ges(G1, G2) =
n∑

i, j=1

f (λi , μ j) < ui , v j >2 (10)

with f (λi , μ j) = g(λi)g(μ j). This allows extensions of the compar-
ison by any other function f instead of g(λi)g(μ j). Some examples,
as in [23] are:

1) f (λi , μ j) = Breg(g(λ), g(μ)), where Breg means
Bregman divergence [1] between the two vectors. In this
case, the comparisons are also Bregman divergences;

2) f (λi , μ j) = s(g(λ), g(μ)), where s denotes any similarity
measure such as correlation.

IV. EDGE WEIGHTING PROPERTY

We show how the similarity measure gives different weights to
different edges in a graph to reflect its importance to connectivity of
the graph, as opposed to edit distance.

Proposition 1: Edit distance between the two graphs G and G1 is
the number of different edges between the two graphs.

Given a graph G = (V, E), we remove one edge, namely Ekl from
G to become G1 = (V, E1). The similarity measure ges(G, G1) is
different from edit distance that edges give different weights. In other
words, some edges are more important than others, according to their
roles in the graph’s connectivity.

Theorem 3: The similarity function ges(G, G1), as well as the
kernel for the new graph, are all dependent on (functions of) the
edge.

Proof: We demonstrate by graphs with one edge differ-
ence. We show that the similarity measure ges(G, G1) and
K1 are dependent on the edge, as opposed to edit distance, which is
independent of edge, which was removed.

Let e ∈ R
n denote a vector with ek = 1 and el = −1, where

the remaining coordinates are 0. From the way graph Laplacians are
constructed, we have

L = L1 + e · eT .

We prove here the results for connected graphs. Results for
nonconnected graphs can be considered by decomposing the graph
into the connected subgraphs and merging the results. Once the graph
G is connected, its Laplacian L is of rank n − 1. Note that the null
space of L is spanned by the vector o = {1, · · · 1}T ∈ R

n , meaning
that any vector x ∈ R

n that xT o = 0 is in the range of L (for any
graph L only).

Denote: J ∈ R
n×n is a matrix of all 1 as in [14], then J = ooT .

Therefore

(I − L L−1)(−e) = 1

n
J (−e) = − 1

n
ooT e = 0.

This is the vector denoted as u in [18].
From [18] (theorem 5), we want to find the update of pseudoin-

verse1 of L1.

1x−1 also denotes the pseudoinverse of a matrix x as well, where
appropriate.

Denote β = 1 − eT L−1e. Then, ignoring the component with u
in this brief.

Case 1: β �= 0

L−1
1 = (L − e × eT)−1

= L−1 + L−1eeT L−1

1 − eT L−1e
.

Hence, the amount of update from the inverse of the original graph
Laplacian is

L−1eeT L−1

1 − eT L−1e
.

The denominator β means the ratio of the number of spanning trees
in the graph that pass through e to the total number of spanning trees.
β �= 0 means that removing the edge e does not disconnect the graph.
In other words, e is not a bridge. β = 0 means e is a bridge. 1−β is
also known as the resistance distance in electronic circuit or chemistry
[17], or Euclidean commute time distance in social networks [11].

Case 2: β = 0, using theorem 6 in [18]. Let q = |L−1e|
L−1

1 = (L − e × eT)−1

= L−1 − 1

q
L−1e(L−1e)T L−1 − 1

q
L−1(eT L−1)T eT L−1

+ 1

q2 ((L−1e)T L−1(eT L−1)T)L−1eeT L−1

= L−1−L−1
(

1

q
eeT L−1+ 1

q
L−1eeT− eT L−3e

q2 eeT
)

L−1.

Hence, the amount of update from the inverse of the original graph
Laplacian is

− 1

q
L−1

(

eeT L−1 + L−1eeT − eT L−3e

q
eeT

)

L−1.

Both cases prove that, the similarity between the original and a
new graph (by removing one edge) is a function depending on the
edge itself. This is totally different from the edit distance in which
the importance of an edge in graph connectivity is not detected.

V. EXPERIMENT

As in Section II, the problem with graph cuts is that the loss
functions only concern two criteria: the total amount of weight cut
and the balance of the clusters. One of the purposes of graph cut-
based clustering is to have highly connected clusters; it makes sense
to require all nodes in the same cluster to connect to each other.
However, this condition is not reflected in the loss functions in (1).

We show by simulation that our similarity measure or distance can
reflect whether the clusters are connected or not among clustering
solutions of the same loss function. It is the case that graph cut
algorithms may find many possible optimal solutions with respect
to the loss function but, intuitively, some solutions make more sense
than others. The simulation graph is shown in Fig. 1 (the first graph).
The graph is designed based on the result of the previous sections.

The simulation shows different graph cuts, which are all optimal
[for ratio cut loss function, an instantiation of (1)]. The graph is cut
by red slides, producing disconnected clusters, resulting in graph G′
(the second graph). Graph is cut by blue dotted slides, producing
connected clusters, resulting in graph G∗ (the third graph).

According to the previous section, they are equally optimal cuts,
so as the cuts by any single red slide. This makes it impossible for
the loss function to determine whether the cut results in disconnected
clusters or not.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 7, JULY 2014 1411

Fig. 1. Simulation graph: each round-shaped area A, B, C, or D is a clique
with all edges of weight 1. All the edges between cliques: A-B, C-B with
weight w, B-C with weight 2w. The second graph is the resulting graph cut
by red slides (G ′). The last graph is the one cut by the blue dotted slide (G∗).

TABLE I
COMPARING DISTANCES d1 VERSUS d2 AND SIMILARITY VALUES s1

VERSUS s2. IT SHOWS THAT GRAPH G∗ IS USUALLY MORE

SIMILAR TO G THAN G ′ IS

Fig. 2. Normalized cut losses versus the ged distances of many clustering
solutions with small losses.

We compare distances with the original graph: d1 = ged(G, G′)
and d2 = ged(G, G∗). We also show the similarities between the new
graphs to the original one: s1 = ges(G, G′) and s2 = ges(G, G∗).
The similarities and distances are shown in Table I.

We observed that the distance of G′ to G is always greater than
that of G∗ to G, i.e., d1 > d2. Likewise, the similarity of G′ to G
is always smaller than that of G∗ to G, i.e., s1 < s2. Hence, graphs
G∗ are consistently more similar to G than G′ to G. It means that
the graphs with disconnected clusters are farther than the graphs with
connected clusters. This shows that as the graphs G∗ have connected
clusters, they tend to be more similar to the original graph G. We
conclude that our similarity measure and its induced distance can
detect the good clustering solutions while the loss functions in (1)
cannot.

We also show the effectiveness of the ged distance on a real
network of Zachary’s karate club2 in Fig. 2. We show the distance
against the normalized cut loss function for different clustering

2www-personal.umich.edu/∼mejn/netdata/

solutions having the loss functions close to the optimal one. We found
that for all the solutions having a similar graph cut loss’s values, the
ones with the smallest ged values are usually the ones with connected
clusters. This means that, for solutions with loss functions close to
optimal ones, we can also rely on the distance to select connected
solutions. This result extends the optimal solutions selection in the
above simulation to a real world case.

VI. CONCLUSION

We studied the problem of clustering on graphs by graph cuts.
We showed the conditions that make the clusters not well connected.
We proposed to detect these cases by comparing the resulting
graphs after cut with the original graph using a graph similarity
measure considering global graph connectivity. We proposed the
graph embedding-based graph comparison that first embeds graphs
into Euclidean spaces and then compares the embeddings in the
spaces. We showed that the comparison does consider the global
connectivities of graphs, as opposed to edit distance. It was confirmed
by our experiments that the similarity and distance measure can
consistently distinguish between the clustering solutions with discon-
nected clusters and the ones without disconnected clusters. Studying
more on the relationship between the types of global connectivity
and the ways of embedding would be interesting future work. Our
methods also can be applied to other scenarios such as comparing
biological networks for phylogenetic tree construction.

REFERENCES

[1] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, “Clustering with
Bregman divergences,” J. Mach. Learn. Res., vol. 6, pp. 1705–1749,
Dec. 2005.

[2] Y. Boykov and O. Veksler, Graph Cuts in Vision and Graphics: Theories
and Applications. New York, NY, USA: Springer-Verlag, 2006.

[3] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy min-
imization via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 23, no. 11, pp. 1222–1239, Nov. 2001.

[4] T. Bühler and M. Hein, “Spectral clustering based on the graph
p-Laplacian,” in Proc. 26th Annu. ICML, 2009, pp. 81–88.

[5] H. Bunke and K. Shearer, “A graph distance metric based on the
maximal common subgraph,” Pattern Recognit. Lett., vol. 19, nos. 3–4,
pp. 255–259, Mar. 1998.

[6] H. Bunke and G. Allerman, “A metric on graphs for structural pattern
recognition,” in Proc. 2nd EUSIPCO, 1983, pp. 257–260.

[7] F. R. K. Chung, Spectral Graph Theory. Providence, RI, USA: AMS,
1994.

[8] P. A. V. de Miranda, A. X. Falcão, and J. K. Udupa, “Synergistic arc-
weight estimation for interactive image segmentation using graphs,”
J. Comput. Vis. Image Understand., vol. 114, no. 1, pp. 85–99,
Jan. 2010.

[9] I. S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means: Spectral cluster-
ing and normalized cuts,” in Proc. 10th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2004, pp. 551–556.

[10] C. Ding, X. He, H. Zha, M. Gu, and H. D. Simon, “A minmaxcut spectral
method for data clustering and graph partitioning,” Lawrence Berkeley
Nat. Lab., Berkeley, CA, USA, Tech. Rep. 54111, 2003.

[11] F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens, “Random-walk
computation of similarities between nodes of a graph with application to
collaborative recommendation,” IEEE Trans. Knowl. Data Eng., vol. 19,
no. 3, pp. 355–369, Mar. 2007.

[12] T. Gärtner, P. A. Flach, and S. Wrobel, “On graph kernels: Hardness
results and efficient alternatives,” in Proc. 16th Annu. Conf. Comput.
Learn. Theory 7th Kernel Workshop, 2003, pp. 129–143.

[13] A. Gretton, O. Bousquet, A. J. Smola, and B. Schölkopf, “Measuring
statistical dependence with Hilbert-Schmidt norms,” in Proc. 16th Int.
Conf. Algorithmic Learn. Theory, 2005, pp. 63–77.

[14] I. Gutman and W. Xiao, “Generalized inverse of the Laplacian matrix and
some applications,” Bull., Classe des Sci. Math. et Natturalles, vol. 129,
no. 29, pp. 15–23, 2004.

[15] L. W. Hagen and A. B. Kahng, “Fast spectral methods for ratio cut
partitioning and clustering,” in Proc. IEEE/ACM Int. Conf. Comput.
Aided Design, Nov. 1991, pp. 10–13.

1412 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 7, JULY 2014

[16] H. Kashima, K. Tsuda, and A. Inokuchi, “Marginalized kernels between
labeled graphs,” in Proc. 20th ICML, 2003, pp. 321–328.

[17] D. J. Klein and M. Randic, “Resistance distance,” J. Math. Chem.,
vol. 12, no. 1, pp. 81–95, 1993.

[18] C. D. Meyer, “Generalized inversion of modified matrices,” SIAM J.
Appl. Math., vol. 24, pp. 315–323, May 1973.

[19] P. A. Miranda and A. X. Falcão, “Links between image segmentation
based on optimum-path forest and minimum cut in graph,” J. Math.
Imag. Vis., vol. 35, no. 2, pp. 128–142, Oct. 2009.

[20] B. Nadler and M. Galun, “Fundamental limitations of spectral cluster-
ing,” in Proc. Adv. NIPS, 2007, pp. 1017–1024.

[21] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905,
Aug. 2000.

[22] A. J. Smola and R. I. Kondor, “Kernels and regularization on graphs,”
in Proc. 18th Annu. Conf. Learn. Theory, 2003, pp. 144–158.

[23] N. Wicker, C. H. Nguyen, and H. Mamitsuka, “A new dissimilarity
measure for labeled graphs,” Linear Algebra Appl., vol. 438, no. 5,
pp. 2331—2338, Mar. 2013.

[24] R. C. Wilson, E. R. Hancock, and B. Luo, “Pattern vectors from algebraic
graph theory,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 7,
pp. 1112–1124, Jul. 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

