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ABSTRACT

Mining frequent patterns is a general and important issue in
data mining. Complex and unstructured (or semi-structured)
datasets have appeared in major data mining applications,
including text mining, web mining and bioinformatics. Min-
ing patterns from these datasets is the focus of many of the
current data mining approaches. We focus on labeled or-
dered trees, typical datasets of semi-structured data in data
mining, and propose a new probabilistic model and its effi-
cient learning scheme for mining labeled ordered trees. The
proposed approach significantly improves the time and space
complexity of an existing probabilistic modeling for labeled
ordered trees, while maintaining its expressive power. We
evaluated the performance of the proposed model, compar-
ing it with that of the existing model, using synthetic as well
as real datasets from the field of glycobiology. Experimental
results showed that the proposed model drastically reduced
the computation time of the competing model, keeping the
predictive power and avoiding overfitting to the training
data. Finally, we assessed our results using the proposed
model on real data from a variety of biological viewpoints,
verifying known facts in glycobiology.

Categories and Subject Descriptors: 1.2.6 [Artificial

Intelligence]: Learning—knowledge acquisition, parameter learn-

ing ; 1.5.1 [Pattern Recognition]: Models—Statistical
General Terms: Algorithms and Experimentation

Keywords: Labeled Ordered Trees, Probabilistic Models,
Maximum Likelihood, Expectation-Maximization

1. INTRODUCTION

Mining frequent patterns is a general and important issue
in data mining. The data in conventional data mining is
well structured, and so relatively simple patterns, such as
associations and sequences, are targeted. However, datasets

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

KDD’06, August 20-23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

of more complex and unstructured (or semi-structured) data
such as trees and graphs have recently appeared in major
data mining applications, such as text mining [21], web min-
ing [4] and bioinformatics [2]. A typical example is a tree-
structured text format called XML on the web [1]. Mining
XML documents has become an important domain in the
field of data mining [22]. XML documents are datasets of
semi-structured data, or more specifically, labeled ordered
trees, and methods based on kernel functions [11] and fre-
quent pattern mining [23] have appeared in recent years.

Probabilistic modeling and learning is a noise-robust, pow-
erful and efficient approach in machine learning and data
mining. Bayesian networks [16], which can handle directed
acyclic graphs, have been used quite frequently since its in-
troduction. However, directed acyclic graphs are much more
complex than labeled ordered trees, and so simpler prob-
abilistic models and more efficient learning algorithms for
trees have been proposed. For example, the hidden tree
Markov model (HTMM) [6] is a probabilistic model for la-
beled trees that handles parent-child dependencies in a given
tree. However, it does not handle sibling dependencies,
meaning that HTMM is not applicable to labeled ordered
trees. The probabilistic sibling-dependent Tree Markov Model
(PSTMM) [18, 19] has been developed for labeled ordered
trees, containing both parent-child and sibling dependen-
cies. These models, which are subclasses of Bayesian net-
works, significantly reduce the high complexity of Bayesian
networks by restricting the target to labeled trees or labeled
ordered trees [19]. The extension of HTMM to PSTMM
for trees is equivalent to that of the hidden Markov model
(HMM) [3, 17] to the probabilistic context free grammars
(PCFGs) [12, 14] for sequences (strings). Consequently,
the time and space complexity of the learning algorithm
of HTMM roughly increases by a factor of the number of
states in PSTMM. This is a sizable difference, since labeled
ordered trees in the real world, such as XML documents, are
often large (or long), while natural language sentences dealt
with by PCFG are rather short. Applying PSTMM to such
large data would make it intractable due to its high time and
space complexity. On the other hand, for small-sized data
such as those found in glycobiology, PSTMM would overfit.
Thus, it is necessary to reduce its complexity in order for
it to be applicable to real-world problems involving labeled
ordered trees.

In light of the above, we propose a new and efficient
probabilistic model, which we call the ordered tree Markov



model (OTMM). We present the time and space efficient al-
gorithms for the three problems arising when OTMM is ap-
plied to real-world problems: likelihood computation, learn-
ing (estimating) the probabilistic parameters based on max-
imum likelihood, and parsing (finding the most likely path).
OTMM has sibling dependencies as well as parent-child de-
pendencies, but the parent-child dependencies are confined
to those between just the eldest siblings and their parents.
Consequently, our model reduces the complexity of PSTMM
to the same level as that of HTMM. The maximum likeli-
hood estimation of the parameters of OTMM is based on
an EM (Expectation-Maximization) algorithm [5, 15]. This
is an extension of the Baum-Welch (Forward-Backward) al-
gorithm for HMMs, which updates the forward and back-
ward probabilities based on dynamic programming. This
extension is similar to that of HTMM and PSTMM, but
we emphasize that these estimation algorithms are signifi-
cantly different from each other. HTMM deals with parent-
child dependencies only, and so the learning algorithm of
HTMM is a straightforward modification of the forward and
backward algorithm in a string to compute the parent-to-
child (downward) and child-to-parent (upward) probabili-
ties. On the other hand, PSTMM handle both the parent-
child and sibling dependencies, and so the algorithm must
deal with both upward and downward probabilities as well
as forward and backward probabilities. In PSTMM, every
child depends on its parent, and the upward (downward)
probability of a node can be directly updated from its child
(parent) easily. In contrast, the parent-child dependencies in
OTMM are limited to the dependencies of the eldest siblings
on their parents. Thus, for OTMM, we needed to develop
an algorithm by which we could compute the four (upward,
downward, forward and backward) probabilities under the
constraint of using the limited parent-child dependencies.

We empirically evaluated the effectiveness of our proposed
scheme using synthetically generated datasets as well as real
datasets in bioinformatics. From the results we obtained, we
found that for any test setting, our approach significantly
reduced the computation time for learning PSTMM and
avoided overfitting to the training data, while either main-
taining or even improving the predictive power of PSTMM.
In particular, we emphasize that a typical increase in compu-
tation time ranged from four- to seven-fold in our experimen-
tal setting, and that this factor increases as the number of
states increase. In addition to these comparison results, we
analyzed biological data by our method using data from gly-
cobiology, which is the study of carbohydrate sugar chains,
or glycans, that can be modeled as labeled ordered trees.
Glycans are considered the third major class of biomolecules
next to DNA and proteins [20], and it is known that the or-
dering of their leaves is used in recognition and signaling
events in various biological processes. Thus we studied the
patterns learned from this data and verified known facts re-
lated to sibling-dependencies in glycans that were captured
by our model.

2. NOTATIONS

We describe the notations that will be used throughout
this paper. A tree is an acyclic connected graph. In this
paper, we refer to a vertex of a tree as a node of the tree. A
rooted tree is a tree that has a special node called the root.
Any node = on a unique path from the root to a node y
is called an ancestor of node y, in which case y is called a

descendant of x. Each of the closest descendants of x (that
is, a node that is only one edge away from node z) is called
a child of x, in which case z is called the parent of the child.
We call nodes x and y siblings if  and y have the same
parent. We call a node having no children a leaf. A subtree
of tree T is a tree consisting of all descendants of a node.
An ordered tree is a rooted tree in which the children of each
node are ordered. A labeled tree is a tree in which a label is
attached to each node. We will often simply use the term
tree in place of an ordered, labeled and rooted tree.

Let T = {T1,..., i1} be a set of labeled ordered trees,
where Ty, = (Vu, Ew) and V(= {z¥,...,2}},,}) and E, C
Vu x V,, are a set of nodes and a set of edges, respectively.
Let 21 be the root of tree T, and |V| = max, |V.|. We
assume that nodes are indexed by level order, which can
be done by traversing the tree in breadth-first order. An
example of trees with their indices is shown in Figure 1.
From this indexing of nodes, for a node j, we can refer to
the immediately elder and younger siblings of j as j — 1 and
j + 1, respectively. Let t,(7) be a subtree of T, having z;'
as the root of ¢,(i). Let z¥ (p) and z* (p) be the eldest
and youngest children of node p, respectively. Let Cy(p) C
{1,...,|Vu|} be a set of indices of children of z, in T, and
|C| = maxy,p |[Cu(p)|- Let X.(j5) be a set of indices of all
the younger siblings of =¥ in T,. Each node z} has label
oj € X, where ¥ = {01,...,0)x5|} is a set of labels. For
simplicity, we will often use node j instead of z} and p as a
parent node, if understood from the context.

Let 6 denote a set of parameters of a probabilistic model.

For simplicity, we may use 6 = {61,...,0,} as a set of pa-
rameters, such that 6; = {0;1,...,60;9,|} and Z‘]e:"l 0;;=1
for i = 1,...,n. A probabilistic model has ‘states,” each of

which is a so-called latent (or hidden) variable that cannot
be seen directly, and each state has a probabilistic parame-
ter which probabilistically generates a label at a node. Let
S = {s1,...,59} be a set of states, and zj' € S be the state
of node j in a tree. For simplicity, we may also use j instead
of 2} and q as the state of a parent node, if understood from
the context.

3. PROPOSED MODEL: ORDERED TREE
MARKOV MODEL (OTMM)

We propose a new efficient probabilistic model for mining
labeled ordered trees which we hereafter call OTMM, for Or-
dered Tree Markov model. Here we briefly describe the dif-
ferences between OTMM and two other similar tree Markov
models, called the Hidden Tree Markov Model (HTMM) [6]
and the Probabilistic Sibling-dependent Tree Markov Model
(PSTMM) [18, 19].

OTMM is a first-order Markov chain model, meaning that
a state depends on only one state. This is also true of
HTMM, which is a probabilistic model for labeled trees.
Figure 2 illustrates the dependencies in HTMM for the tree
T. in Figure 1 (a), where the state of a node depends on
the state of its parent node. In OTMM, the state of a node
depends on either the state of its parent or its immediately
elder sibling. Figure 3 shows the dependencies in OTMM
for the tree T, in Figure 1 (a). As shown in the figure, if the
node of a state is the eldest sibling, this state depends on
its parent; otherwise, this state depends on its immediately
elder sibling. Thus an important difference between OTMM
and HTMM is that sibling dependencies are considered in



Figure 1: Notations for labeled ordered trees. (a) Labeled ordered tree Ty.

children.
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Figure 2: Graphical representation of HTMM for

tree T, in Figure 1.
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Flgure 3: Graphlcal representation of OTMM for
tree T, in Figure 1.

OTMM but not in HTMM. Obviously, this difference makes
the expressive power of OTMM for labeled ordered trees
greater than that of HTMM.

On the other hand, PSTMM is a probabilistic model for
labeled ordered trees, and the state of a node always de-
pends on two different states, except for the eldest siblings.
Figure 4 illustrates the dependencies in PSTMM for the tree
in Figure 1 (a). As shown in the figure, the dependencies
on the immediately elder sibling and on the parent are both
considered in PSTMM. This feature gives PSTMM rich ex-
pressive power, but it is computationally expensive and re-
quires more memory space in estimating the probabilistic
parameters of PSTMM. In addition, this high complexity of
PSTMM has the additional risk of overfitting to data. In
fact, these problems have appeared when applying PSTMM
to real data. OTMM avoids these problems and achieves
better performance in practical situations where PSTMM
suffers from the above problems.

In addition, recall that hidden Markov models (HMMs)
enable the indirect capture of distant (long-range) depen-
dencies in a sequence. We emphasize that OTMM can also
capture such indirect dependencies in a similar manner. For
example, a dependency between a node and its distant sib-
ling, which cannot be captured by HTMM, may be detected
by OTMM (and PSTMM). A dependency between a node
and its distant sibling’s descendant may also be captured
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Figure 4: Graphical representation of PSTMM for
tree 7T, in Figure 1.

by OTMM (and PSTMM) but clearly not by HTMM. From
the viewpoint of capturing such indirect dependencies, we
can say that the expressive power of OTMM is at the same
level as that of PSTMM and that it is greater than that of
HTMM.

The algorithms for OTMM are derived by making some
significant modifications to the algorithms of PSTMM, al-
though OTMM is a simplification of PSTMM. These modi-
fications are necessary to account for the reduced dependen-
cies between parent and child. Thus in OTMM, the ances-
tor information cannot be transfered through parent-child
dependencies directly except to the eldest siblings, although
before, this information was easily (and directly) sent from
a parent to all its children in PSTMM. As a result, it was
necessary to reconstruct both the definitions of some prob-
abilities and the equations using these probabilities in the
dynamic programming procedure for learning PSTMM.

OTMM has three types of probability parameters, =, a,
and b. The initial state probability 7[l] (= P(z{ = s1;0)) is
the probability that the state 2 of the root node z{ is s;.
The state transition probability a further takes two types:
algml(= P! = smlz = s,30)) and Bll,m](= P(z} =
sm|zj_1 = s1;0)). alg,m] is the conditional probability that
the state of a node is sy, given that the state of its parent
is sq. B[l,m] is the conditional probability that the state of
a node is sy, given that the state of the immediately elder
sibling is s;. The label output probability b[l,o](= P (o} =
onlzj = s1;0)) is the conditional probability that the output
label of a node is o}, given that the state of this node is s;.
Note that >, #[l] = 1, > alg,m] =1, > Bll,m] =1,
and Y, b[l,on] = 1.

Given the probabilistic model, there are three key prob-
lems of interest that must be solved for the model to be
used in real world applications [17]: 1) Likelihood computa-
tion: computing the likelihood of a given tree, 2) Learning:
estimating the probability parameters from a set of given
trees, and 3) Parsing (Prediction): finding the most likely
state transition for a given tree using the estimated prob-
ability parameters. In the following three subsections, we



Uu(m, j)  Bu(l, j+1)
Figure 5: Updating (left) U.(q,p) and (right)
By(m,j). The sparse shaded node is p for U,(q,p)
and j for B,(m,j). Dense shaded areas are used for
updating.

will explain our efficient algorithms for OTMM for each of
the above three problems.

3.1 Likelihood Computation

3.1.1 Upward and Backward Probabilities

We define an upward probability and a backward prob-
ability. The upward probability U, (q,p) is the probability
that all labels of subtree t,(p) are generated and the state
of node p is sq. The backward probability B.(l,j) is the
probability that for node j, all labels of a subtree for each
of the younger siblings and node j are generated, and the
state of j is s;.

We can compute these two probabilities using a bottom-
up (B-up) dynamic programming (DP) procedure. This
computation is formulated as follows:

If Cu(p) = 0 then b[g, 0]

otherwise
S|
U1L b = u ] 1
(ap) blg, op] Z alg, m]Bu(m, j) .
m=1
(s-t. xf =z (p))
If x;‘ = aj’i(p) then Uu(m7j)7
otherwise
Bu (777,7]) = 151 (2)

Uu(m,5) > Blm, | Bu(l,j + 1)

=1

Figure 5 depicts the above calculation of the upward and
backward probabilities. The upward probability at a node is
computed using the backward probability of its eldest child,
so this computation is repeated from the (eldest) child to
its parent. The backward probability at a node is computed
using the backward probability of its immediately younger
sibling, meaning that this computation is successively re-
peated from a node to its immediately elder sibling. So the
whole computation proceeds from the leaves to the root, in
reverse breadth-first order, going bottom-up and right-to-
left (R-to-L) using dynamic programming.

We can compute the likelihood for a given tree T, by using
the upward probability at the root of the tree, as follows:

S|

L(T.) = > _ w[lU.(1,1).

=1

The likelihood for a given set of trees is defined as the prod-

uct of the likelihood for each tree in the set.

IT| IT| S|

L(T) = [[ L) = [] D ~lvu(,1).

u=1 =1

The above computation is relatively similar to that of
PSTMM. A significant difference is that the backward prob-
ability of OTMM is a tri-tuple, while that of PSTMM is a
quatro-tuple. This feature of OTMM reduces both the time
and space complexity of PSTMM.

3.2 Learning: Maximum Likelihood Estima-
tion
Maximum likelihood is a general criterion used to estimate
the probability parameters of a probabilistic model from the
given training examples. We employ an EM algorithm [5,
15], a general and popular scheme to maximize the likelihood
for a given set of examples.

3.2.1 Forward and Downward Probabilities

We define forward and downward probabilities and use
them with the backward and upward probabilities, both
of which were defined in the previous section. The for-
ward probability F,(l,7) is the probability that all labels of
tree Ty, except for those of subtree t,(j) and of all subtrees
tu(k) (k € Xu(j)) are generated and that the state of node
x3 is s;. The downward probability D., (1, 7) is the probabil-
ity that all labels of tree Ty, except for those of subtree ¢.(7)
are generated and that the state of z} is s;.

We can compute these two probabilities using a top-down
(T-down) dynamic programming procedure. This computa-
tion is formulated as follows:

El
If 2 = 2 (p) then » _ o[q,1]Du(q,p)blg, 0} ],

q

F.(,5) = otherwise
|S]
> Blm, | Fu(m, j — 1)Uu(m,j — 1)
m=1
If j =1 then =[],
else if z = 2, (p) then F.(l, j),
N otherwise
Du(lvj) = S|
Fu(lvj) Z ﬁ[l7m]Bu(m7] + 1)
m=1

Figure 6 depicts these calculations for the forward prob-
ability at the eldest sibling and at another node. The for-
ward probability at the eldest sibling is computed using the
downward probability of its parent, meaning that this com-
putation is repeated from a parent to its eldest child. The
forward probability at another node is computed using the
forward and upward probabilities of its immediately elder
sibling, meaning that this computation is repeated from a
node to its immediately younger sibling. Figure 7 depicts
the calculation of the downward probability. The downward
probability at a node is computed using its forward proba-
bility (and the backward probability of its younger sibling),
and so at each node the downward probability must be com-
puted after the forward probability is computed. Overall,
the entire computation proceeds from the root to the leaves,
in breadth-first order, in a top-down and left-to-right (L-to-
R) dynamic programming procedure.



Figure 6: Updating F,(l,j) (left) at the eldest sib-
ling and (right) at another node. The sparse shaded
node is j, and dense shaded areas are used for up-
dating.

Figure 7: Updating D,(l,j). The sparse shaded node
is j, and dense shaded areas are used for updating.

The updating rules of the forward and downward prob-
abilities are significantly different from those of PSTMM.
In PSTMM, the downward probability of a node was easily
computed by using the downward probability of its parent.
However, in OTMM, the state of a node (except the eldest
siblings) does not depend on the state of its parent. There-
fore, the downward probability needed to be computed from
somewhere else, either the forward and/or backward prob-
abilities. That is, we needed to incorporate the downward
(i.e. parent to child) dependencies into either the forward
or the backward probabilities. This was not possible for the
backward probabilities, because the parent-child dependen-
cies are limited to the eldest siblings only. Thus, at the
eldest sibling, we compute the forward probability using the
downward probability of its parent, and the forward prob-
ability carries the downward dependencies from parent to
child. As a result, the forward probability of OTMM con-
tains richer dependency information than that of PSTMM,
making it completely different from that of PSTMM.

We note that the forward probability of OTMM is a tri-
tuple, while it is a quatro-tuple in PSTMM. Thus we can
expect that the algorithms for OTMM will run faster than
those for PSTMM. We also note that the likelihood of a tree
can be computed by OTMM using the upward and down-
ward probabilities at node i as follows:

L(Tu) = Uu(l,i)Du(l, ).

3.2.2 EM (Expectation-Maximization) Algorithm

The EM algorithm for OTMM iterates the following E-
and M-steps alternately, using the above four probabilities.

E-step:

We compute the expectation values p. (aq, 1)), pw(B[g, 1]),
tu(b[m, op]) and py (7w[m]) from the current probabil-
ity parameters and from the auxiliary probabilities F,,
Bu, Ua, Du.

pu(alg, 1) =

1
L(Tw) 2

p:Cuy (p)#0
(s.t. =¥ =z (p))

Du(q,p)b[q, O;)L]Oé[qv l]Bu(lv])

pu(Blg, 1)) =
1 . . .
L) 2= Fu(q,5)Bla, |Bu(l,j + 1)Uu(g, 5)
pu(blm, on]) = L(lTu).Z D (m, i)Uu(m, i),
1
pru(mm]) = L(Tu)ﬂ[m]Uu(mJ),
M-step:

We update the probability parameters using these ex-
pectation values computed in the E-step:

> iulalg, 1)

alg,l] = u ,
el S S el )
u

> wa(Blg, 1))
Blg,l] = =% :
@t Do ma(Bla, 1)
Zﬂu(b[mvah])
Bm,a - 5
o >3 mblm. )
Zﬂu(ﬂ'[m])
0 [ B

SN pllk])

u

We repeat these E- and M-steps alternately until a certain
convergence criterion is satisfied*. A possible criterion is
that the increase of the likelihood at an iteration is less than
a minimal threshold value.

Figure 8 is sample pseudocode for this EM algorithm for
OTMM. This algorithm starts with parameter initialization
and likelihood L(T) computation using the initial param-
eter values (lines 1-2). The parameters can be randomly

'Note that it has been proven that the EM algorithm theo-
retically converges to a local maximum solution [15].



1:for each 6; ; do Initialize 6;

2: Calculate L®)(T) using the initial 6;
3:t:=0;

4:repeat

5: for each 0; ; do ur(0; ;) := 0;

6: foru:=1to|T|do
7
8

for k := |V,| downto 1 do /* B-up & R-to-L DP */

for each ¢ € S do Calculate U,(q, k);

9: for each m € S do Calculate By(m, k);
10: for k :=1 to |V,| do /* T-down & L-to-R DP */
11: for each ¢ € S do Calculate Dy (q, k);
12: for each m € S do Calculate F,(m,k);
13: for each 0; ; do Calculate fu,(0; ;);
14: for each Gi,j do ,U,T(ai,j) = ,LLT(Gi,j) =+ /Jlu(ei,j);

15: for each 6;; do Update 0; ; using ur(6;;);
16: t:=t+1;

17:  Calculate L®(T) using the current 6;

18: until |L(T) — LED(T)| < e

19: output 6;

Figure 8: Pseudocode of the EM algorithm for
OTMM.

initialized, satisfying Z]. 0;,; = 1 for all 5. We then start
repeating the E- and M-steps (lines 3-4). In each iteration,
we first initialize the expectation value to pr(6;,;) := 0 (line
5). In the E-step, we compute the upward and backward
probabilities by a bottom-up and right-to-left dynamic pro-
gramming procedure (lines 7-9) and the downward and for-
ward probabilities by a top-down and left-to-right dynamic
programming procedure (lines 10-12). We then update the
expectation values ur(6;;) (lines 13-14). In the M-step,
we update the probability parameters using the expectation
values (line 15). At the final part of the iteration, we com-
pute the likelihood L(T) (line 17) and confirm whether some
fixed convergence criterion is satisfied (line 18). After the it-
erations, we output the probability parameters learned from
the given trees (line 19).

3.3 Parsing (Finding the Most Likely State
Transition)

Once the model is trained, we need to retrieve what was
learned by retrieving the most likely state paths. Let Z7; (=
{45, ,qfv,|}) be the most likely state transition of a given
tree T,. We first reformulate the upward and backward
probabilities to find the maximum probabilities, ¢Y(g,p)
and ¢Z(m, j), respectively. That is, ¢Y (g, p) is the maxi-
mum probability that all labels of subtree ¢, (p) are gener-
ated and the state of node p is s4 (maximum probability of
U.(q,p)), and ¢Z is the corresponding maximum probabil-
ity for By(m,j). In order to obtain these two “maximum
probability” values, we first replace the > in Equations (1)
and (2) with max and then iteratively compute these prob-
abilities using the bottom-up and right-to-left dynamic pro-
gramming procedure. This procedure is generally called the
Viterbi algorithm, and the probability that all labels are
outputted along the most likely state transition is given as
P* = max; n[l]oY (I, 1).

We further define two functions ¥Y (¢, p) and ¥Z(m,j),
each of which returns the most likely state for the given
node, and it can be computed by replacing > in (1) and (2)

Table 1: Time and space complexity
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Table 2: Time and Space Complexity Comparison
of HTMM and PSTMM

Time
OTMM O(T|-|S]? - [V])
HTMM O(|T|-|S]?- |V
PSTMM o(T|-|S)®-|[V]-IC])

Space
OTMM | max{O([S]-[V]), O(S),0(S[- > D}
HTMM max{O(]S] - [V]),0(S[*),0(S|- 1> 1)}
PSTMM | max{O([S]” - [V]), O(ISF), 0(S|Z- > D}

with argmax. The most likely state transition starts with
the most likely state for the root, which can be obtained by
¢t = argmax; n[l]¢] (I,1). We can then retrieve the most
likely state transition by computing the following equations
in the top-down and left-to-right manner as done for the
forward and downward probabilities: ¢; = Y (gp,p) if x5 =

z* (p); otherwise ¢f =¥ (q;_1,5 — 1).

3.4 Time and Space Complexity

Table 1 summarizes the time and space complexity of the
above algorithms for OTMM, including the likelihood com-
putation and parameter estimation. We note that the com-
plexity of the parsing is the same as that of the likelihood
computation. As clearly shown in the table, the time com-
plexity of the most time consuming parts is O(|T|-|S|*-|V]),
and the space complexity is upper-bounded by max{O(|S| -
VD), O(S1?), 0(S] - I )}

Table 2 shows the comparison of the time and space com-
plexities between OTMM and the other two tree Markov
models, HTMM and PSTMM. This table illustrates that
the space and time complexity of OTMM are kept at the
same as those of HTMM and are significantly lower than
those of PSTMM.

Furthermore, we note that algorithms used for estimat-
ing probability parameters of probabilistic models for more
general (complex) objects like graphs have higher compu-
tational complexity. For example, both the time and space
complexity of the junction tree algorithm [13] for probabilis-
tic inference in a Bayesian network reaches O(|T|-|S|* - |V|)
for a directed acyclic graph with |V| nodes. Thus we can say
that our model and its learning algorithm can provide a rel-
atively low complexity by confining them in labeled ordered
trees.



4. EXPERIMENTAL RESULTS

We examined the performance of our proposed model on
both synthetic and real datasets, comparing it with that of
PSTMM in terms of predictive accuracy and computation
time. The predictive accuracy was computed in a supervised
learning manner. That is, we trained the model using a
set of positive examples and examined the ability of the
trained model to discriminate the positive examples from the
negatives. Using the real dataset, we confirmed the validity
of our method by examining the results from a variety of
biological viewpoints.

4.1 Synthetic Data

4.1.1 Data Generation Procedure

The models were trained using positive examples only, and
so we synthetically generated three datasets, i.e. positive
training, positive test and negative test datasets. We kept
the size of each of these three datasets the same, which is
denoted by |T|, and in our experiments, we tested various
values of |T| and numbers of states |S|. We set |>_ | = 10
and |V, | = 20 in all of our experiments.

Each positive example contains a tree fragment as a pat-
tern. Figure 9 shows the six tree fragments Q1 to Q6 that
we used in our experiments. In each tree fragment in Fig-
ure 9, the solid circle indicates a fixed label, and the dashed
circle indicates that the label is randomly selected. So, for
example, in Q5, the labels of the eldest and third siblings
are fixed, whereas the labels of the parent and the second
sibling are randomly applied. We generated K different la-
bel patterns for each tree fragment. In positive example
generation for a particular tree fragment pattern, a positive
example was generated by the following two steps. First, we
generated a random tree by iteratively: randomly generat-
ing zero to five children and randomly assigning a label to
each of the children, until the number of generated nodes
reached twenty. Second, we randomly embedded one of the
K label patterns of the tree fragment into the tree. A nega-
tive example was generated in the same manner as the first
step above, except that the random generation of labels fol-
lows the distribution of parent-child labels in the positive
examples.

4.1.2  Performance Comparison with PSTMM

We evaluated the discriminative performance of the mod-
els by AUC, the area under the ROC (Receiver Operator
Characteristic) curve [7, 8]. We can compute the AUC by
first sorting examples by their computed likelihoods and
then by using Equation (3).

nn - (nn+1)
AUC = R"—27 (3)
N - Np
where n,, (n,) is the number of negative (positive) examples
and R, is the sum of the ranks of the negative examples.
We note that n, = n, in our experiments.

We first evaluated the amount of overfitting to the train-
ing data that occurred, using Q1 as the tree fragment. In
this experiment, |T| = 100 and K = 1, such that the com-
plexity of the data was relatively low and the tendency to
overfit would be higher. Figure 10 shows the AUC for the
training® and test datasets, setting the range of |S| between

2We used the negative examples in the test set to compute
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Figure 10: Performance comparison of OTMM with
PSTMM when |T| = 100.

two and twelve. The AUCs of the two models for the train-
ing examples increased with |S| and reached around 100%
when |S| was eight or more. On the other hand, the AUCs
for the test examples decreased with |S|. In particular, the
AUC of PSTMM for the test data went down to 70% from
around 95%, which was the highest obtained when |S| was
four. This phenomenon clearly illustrates overfitting to the
training data. A similar tendency was found with the AUC
of OTMM but it was always more than 85%, which was
around 15% better than the worst AUC of PSTMM. Thus,
can say that OTMM reduced the overfitting problems of
PSTMM. We can infer from these results that PSTMM with
more than four states is too complex to be trained from the
dataset we used in this experiment and that OTMM is more
appropriate for this dataset.

Figure 11 shows how the AUC and computation time for
the test examples change with different values of |T| and
|S|, using K = 3 and Q1 as the tree fragment. We note
that the complexity of the dataset increases with |T|, and
the complexity of the model increases with |S|. So when
|T| was relatively small, say 100, and |S| was large, say ten,
overfitting occurred. However, when |T| was large, say 400
and 600, and |S| was small or a moderate size, say 2 to 6, the
AUCs remained at the maximum, meaning that overfitting
was avoided. Under such conditions, e.g. |T| = 400 and
|S| = 6, we can see that the two models achieved almost
the same predictive performance, indicating that OTMM
kept approximately the same predictive power as that of
PSTMM. On the other hand, regarding the computation
time, the two models were clearly different. For example, for
|T| = 400 and |S| = 10, the computation time of PSTMM
reached 4,000 seconds while that of OTMM was just under
1,000 seconds. OTMM clearly reduces the computational
cost of PSTMM greatly, keeping its predictive power and
avoiding overfitting. This result indicates that OTMM is
more practical for mining from large datasets of labeled or-
dered trees compared to PSTMM.

We next fixed |T| at 200 and changed K, still using Q1 as
the tree fragment. As |T| increases with K, so does the com-
plexity of the data, and so the results in Figure 12 are similar
to those in Figure 11. However, we note that in this case,
under the conditions when overfitting did not occur, OTMM
achieved better performance than PSTMM. That is, when
K was set between two and four, we found that PSTMM
achieved the highest AUC at |S| = 6, where overfitting did
not occur, and that the AUC of OTMM was clearly better
than that of PSTMM. This indicates that in this experi-

the AUC of the training data.




AR
[
Q1 Q2 Q3 Q4 Q5 Q6 .'\—
ek Pak Y
/ '\ / ’\ -
A ,£ eldest
R N N sibling
Figure 9: Six patterns of tree fragments used in our experiments.
|T| = 100 |'T| = 200 |T| = 400 |'T| = 600
85 10008 100 2400% 100 o7 4000g 100 100008
< < OTMM < <-OTMM £ <-OTMM S
80 800 3 A 3 3 3
2 90 I bsTmM ) 1800‘2 90 osTmE 3000.2 90 f<. pPSTMM 7500 2
875 600 ¢ & / 3 € / 3 € by
o E 580 P 1200E (5 80 2000E (G 80 / 5000 £
270 400 T 2 ,f % E 3 £ 9 . E
< § < FpgTvm -> § < 5§ < A PSTMM > 5
g 70 600 § 70 10008 70 2500 &
65 200 5 X 5 El VIR E
g 5| U g g of X g
60 o 3§ 60 oK OTMM -> 0 38 60 o § 60 Lt OTMM -> o s
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
# states (|S|) # states (|S]) # states (|S|) # states (|S|)

Figure 11: AUC and computation time for K = 3.

mental setting, OTMM had better predictive power than
PSTMM.

Finally, we checked the predictive performance and com-
putation time of the two models for all the six tree frag-
ments, Q1 to Q6. The parameter settings we used in this
experiment were K = 3, |T| = 400 and |S| = 6, the same
conditions as when overfitting did not occur for Q1 using
both OTMM and PSTMM. Table 3 shows the AUC and
computation time. The predictive performances of the two
models were almost equivalent except for 6, where the
AUC of OTMM was roughly seven percent better than that
of PSTMM. Thus we can say that OTMM has almost the
same or better predictive power compared to PSTMM. On
the other hand, the difference in computation time between
the two models was significant. In Table 3, we indicate the
ratio of the computation time of OTMM to that of PSTMM
in parentheses, which shows that the typical computation
time improved by a factor of at least three to at most six,
which increases as |S| increases. Consequently, we have
clearly demonstrated the advantage of OTMM in compu-
tation time and that it is more practical than PSTMM for
mining complex labeled ordered trees.

4.2 Real Data: Carbohydrate Sugar Chains
4.2.1 About the Data

We used real data derived from glycobiology (an overview
of this field is provided in a book by Varki et al. [20]), which
is the study of carbohydrate sugar chains, or glycans. Gly-
cans can be modeled as branched and directed tree struc-
tures. The basic component of glycans is the monosaccha-
ride unit (or sugar), which corresponds to a label, and each
sugar may have one or more child sugars bound to it, such
that they are ordered. Thus glycans can be considered la-
beled ordered trees. The glycans we used in our experiments
are all derived from the KEGG GLYCAN database [9, 10].
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Figure 13: Performance comparison of OTMM with
PSTMM using real datasets.

4.2.2  Performance Comparison with PSTMM

Glycans are classified based on their structural properties,
and we selected two of the major classes called “N-Glycans”
and “O-glycans,” which were used as the positive and nega-
tive datasets, respectively. We examined whether N-Glycans
could be discriminated from O-Glycans by the model trained
using N-Glycans. We performed a five-fold cross-validation
to evaluate the performance of OTMM and PSTMM. That
is, we randomly divided a given dataset into five blocks of
roughly equal size. Then the first block would be reserved
as test data while the remaining four were used as training
data. This was repeated for each of the five blocks. We re-
peated this random division five times, and the results were
averaged over the total 25 (= 5 x 5) runs. We used those
glycans containing five to eighteen sugars only, because the
dataset of the other glycans was very small. In total, we
used 1,826 N-Glycans and 606 O-Glycans. In this experi-
ment, |S| = 6 since the predictive performance of OTMM
and PSTMM was always the best under this setting in the
synthetic data experiments.

Figure 13 shows the AUC and computation time of the
two models for the real datasets. The two models achieved
approximately the same AUC values for all |S| we used.
However, the amount of computation time of OTMM was
much smaller than that of PSTMM. That is, at |S| = 8§,
the computation time improvement reached a factor of ap-
proximately six to seven. Thus, from the real datasets, we
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Figure 12: AUC and computation time for |T| = 200.
Table 3: AUC and computation time for the six tree fragments in Figure 9.
| Model | Q1 | Q2 | Q3 | Q4 | Q5 | Q6
AUC OTMM 93.4 87.2 88.6 96.6 81.8 82.0
(%) PSTMM 92.3 89.9 91.8 95.0 79.9 75.2
Comp. Time | OTMM | 438.7 (0.204) | 583.8 (0.269) | 608.8 (0.309) | 379.5 (0.193) | 829.8 (0.239) | 581.4 (0.179)
(in seconds) | PSTMM | 2145.6 (1.0) 2173.8 (1.0) 1970.8 (1.0) 1961.9 (1.0) 3475.4 (1.0) 3257.1 (1.0)
confirmed that the time efficiency of OTMM was consistent @b ik G04025
with the results using the synthetic datasets. g. at
R . . b1—— 4 Wl b1
4.2.3  Results with Biological Significance = = 6
. . @bl — 4@ bl— 4
Next, we verified the actual patterns learned in the data 3
to verify the biological characteristics retrieved. We focus Obl—— 4l b1 O Galactose
on the set of N-Glycan structures because it is the most well- 4@ar @ Mannose
studied among all the glycan classes. Using the N-Glycan 2 | N-acetylglucosamine
data set from the previous experiment, we extracted the Opt—— 4@ O N-acetylgalactosamine
most likely state paths and found some interesting patterns
reflecting the biological properties of sugars. Figure 14 is an ° s
example a glycan tested and the most likely state transitions 3
for it. Here we see reflected the fact that the Gal (galactose) o 5
residues and GalNAc (N-acetylgalactosamine) residues end
up with the same state. This corresponds with the fact that 7——0——8
GalNAc is a modification of Gal, such that they may be 0 5
considered very similar and sometimes appear in place of
each other. Thus they may be aligned together as well. A 3 State diagram for G04025
rather large number of glycans have this pattern of sugars
at the leaves, where Gals may be GalNAcs and vice versa. o °
In another trial, we assessed the most likely state transi- Figure 14: Example of the states learned using

tions for glycans representing the three sub-classes of N-
Glycans: High-mannose, Complex, and Hybrid, given in
Figure 15. Here we see these three classes being distin-
guished based on the states learned. In particular, the states
at the tri-mannose core distinguishes these three sub-classes.
The High-mannose type is characterized by state 2 appear-
ing at both child mannoses. For the Complex type, these
mannoses are both state 1. Consequently, the Hybrid type,
which is a hybrid of these two types having one each of
a High-mannose type subtree and a Complex-type subtree,
receives state 1 on one mannose, and state 2 on the other.
Thus, the states learned at just the core N-Glycan structure
can determine the sub-class without needing to actually tra-
verse the rest of the structure.

5. CONCLUDING REMARKS

In summary, we have developed a new probabilistic model,
OTMM, and an efficient learning scheme for mining labeled
ordered trees. We empirically evaluated the effectiveness
of OTMM using both synthetic and real datasets and found

OTMM for a specific glycan structure.

that in all of the experimental settings we conducted, OTMM
achieved equivalent or better performance compared to the
more complex probabilistic model, PSTMM, for mining la-
beled ordered trees. In particular, the amount of computa-
tion time of OTMM is significantly less than that of PSTMM
in all experimental settings.

The key property of our method that contributes to these
improvements is its concise model structure, in which the
state of a node depends on only one state, and the effi-
cient learning algorithm by which the model captures both
the sibling and parent-child dependencies in labeled ordered
trees. Thus, we have developed the ultimate model in terms
of efficiency and accuracy for mining labeled ordered trees.
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