Efficient Mining from Large Databases by Query Learning

Hiroshi Mamitsuka
Naoki Abe

H-MAMITSUKA @AK.JP .NEC.COM
N-ABE@QAX.JP.NEC.COM

NEC C& C Media Research Laboratories, 4-1-1 Miyazaki, Miyamae-ku, Kawasaki 216-8555 JAPAN

Abstract

We propose a new data mining method that
is effective for mining from very large data
sets by applying ideas of query learning. In
particular, we propose and evaluate a selec-
tive sampling method that belongs to the
general category of ‘uncertainty sampling,’
by adopting and extending the ‘query by bag-
ging’ method, proposed earlier by the au-
thors as a query learning method. We em-
pirically evaluate the effectiveness of the pro-
posed method by comparing its performance
against Breiman’s Ivotes, a representative
sampling method for scaling up inductive al-
gorithms. Our results show that the perfor-
mance of the proposed method compares fa-
vorably against that of Ivotes, both in terms
of the predictive accuracy achieved using a
fixed amount of computation time, and the
final accuracy achieved. This is found to be
especially the case when the data size ap-
proaches a million, a typical data size encoun-
tered in real world data mining applications.
We have also examined the effect of noise in
the data and found that the advantage of the
proposed method becomes more pronounced
for larger noise levels. This i1s further con-
firmed by our experiments on an actual data
set in database marketing.

1. Introduction

With increasing successes of business applications of
data mining, machine learning techniques are attract-
ing attention as foundations of data mining technol-
ogy. One important aspect of data mining which dis-
tinguishes 1t from machine learning, however, is the
abundance of data it typically involves. In most real
world data mining applications, data sizes reach mil-
lions, if not more. A central issue in data mining,
therefore, is how to computationally efficiently find ef-
fective rules from a very large database. This repre-

sents a significant change in mind-set from the usual
machine learning practices, in which the goal is to ef-
ficiently find a good predictive rule, from as few data
as possible.

Provost and Kolluri (1999) give a comprehensive sur-
vey of methods for ‘scaling up’ inductive algorithms,
for the purpose of mining from large data sets. Of
the approaches surveyed in this article, we are con-
cerned with that of ‘data partitioning’, and ‘sequential
multi-subset learning with a model-guided instance se-
lection,” in particular. In this approach, relatively
small subsets of data are sequentially sampled, using a
model guided instance selection strategy, and the suc-
cessive models are combined to give the final resulting
model. A number of methods that have been proposed
to date in the literature belong to this category, includ-
ing Windowing (Quinlan, 1983), Integrative Window-
ing (Furnkranz, 1998), boosting (Freund & Schapire,
1997), and Ivotes (Breiman, 1999). One thing that is
common among all of these methods is that they em-
ploy a sampling method that makes use of the label
information in the candidate instances. For example,
Ivotes uses a sampling method called ‘importance sam-
pling’, which chooses examples on which the current
hypothesis makes a mistake and (with high probabil-
ity) discards those on which the current hypothesis
predicts correctly. It has been reported, however, that
some of these methods do not work well, in the pres-
ence of abundant noise in the training data (Catlett,

1991; Provost & Kolluri, 1999).

As a remedy for this problem, we propose to use
what is generically known as ‘uncertainty sampling’,
which samples those examples that cannot be reli-
ably predicted at that point. Note that, in uncer-
tainty sampling, the label information in the candi-
date instances is not used in making selections, and
thus such a method can be interpreted as a ‘query
learning method’ that queries for the labels of selected
instances. The purpose of the present paper is to ex-
amine how well this approach works in the current
context of efficient mining from large data sets, and

to characterize under what conditions it works better
than importance sampling, in particular. The particu-
lar sampling method we employ is based on the idea of
‘query by bagging’ proposed by Abe and Mamitsuka
(1998), which was in turn obtained by combining ideas
of query by committee (Seung et al., 1992) and ‘bag-
ging’ (Breiman, 1996). The basic idea is that query
points are chosen by picking points on which the pre-
dictions made by the hypotheses resulting from apply-
ing the component inductive algorithm to sub-samples
obtained via re-sampling from the original data set, are
most evenly spread. This method is like Breiman’s Iv-
otes, except committee-based uncertainty sampling is
used in place of the importance sampling employed in
Ivotes.

We empirically evaluated the performance of this
method, using a number of different types of data sets.
In our first experiments, we used synthetic data sets
of size one million each, generated from the ‘genera-
tor’ functions of (Agrawal et al., 1993), used often as
benchmark data for evaluating data mining methods.
We found that the performance of QbagS was favor-
able as compared to that of Ivotes, both in terms of
the computation time required to reach the same pre-
dictive accuracy, and the final accuracy attained.

In order to better understand the conditions under
which QbagS performs well, we varied a parameter
called the ‘perturbation factor,” which controls the
noise level of the ‘generator’ functions. It was found
that for larger perturbation factors, the significance
level by which QbagS out-performed Ivotes became
larger. This result confirms the thesis that uncer-
tainty sampling 1s more desirable than sampling meth-
ods that concentrate on those instances on which pre-
diction errors are made, when the data is noisy. This
thesis is further supported by the results of our experi-
mentation on a real world data set, which is inevitably
noisy. Specifically, we compared the two methods us-
ing a data set in the area of database marketing (in-
ternet provider churn data) of size roughly a million.
Here we found that the predictive accuracy of QbagS
was significantly better than Ivotes.

We also evaluated the performance of these methods
on medium sized data sets, using data sets from the
Statlog project (Michie et al., 1994), whose sizes are in
the range of tens of thousands. On these data sets, we
also compared the performance of the original Qbag,
in addition to QbagS and Ivotes. It was found that
Qbag did the best overall for the medium sized data
sets, although the differences in performance were not
greatly significant.

2. The Mining/Learning Methods
2.1 Proposed Method

In this section, we describe the mining/learning
method we propose and evaluate in this paper, which
we call QbagS, standing for ‘Query by bagging with
a single loop.” This procedure provides a sampling
strategy that uses an arbitrary component learning al-
gorithm as a subroutine, and works roughly as follows.
(See the pseudocode shown below.) At each iteration,
it randomly samples a relatively large number of candi-
date examples (R, say 10,000) from the database (line
1). Tt then selects a small enough (D, say 1,000) subset
of this set and applies the component learning algo-
rithm to it to obtain a new hypothesis (line 3). When
making this selection, it uses the hypotheses from the
past iterations to predict the labels of the candidate
examples, and then pick those on which the predicted
values are split most evenly. More precisely, it calcu-
lates the ‘margin’ of each candidate instance, that is,
the difference between the number of votes by the past
hypotheses for the most ‘popular’ label, and that for
the second most popular label (line 2). Then, D in-
stances having the least values of margin are selected
from the candidates (line 3). The final hypothesis is
defined by the majority vote over all the hypotheses
obtained in the above process.

Algorithm: Query-by-Bagging:Single (QbagS)
Input: Number of iterations: M
Component learning algorithm: A
Number of candidates at each iteration: R
Number of selected examples at each iteration: D
Candidates at the i-th iteration: C;
Selected (training) examples at the i-th iteration: S;
Initialization: 1. Randomly sample initial sample
S1 = {(x1,91), -, (xp,yp)) from the database.
2. Run A on 57 and obtain hypothesis A;.
For:=1,... M
1. Randomly sample R examples C; from database.
2. For all z € C;, calculate ‘margin’ m(z) using past
hypotheses hy, -+, h;
m(z) = max, [{t <7:h(z) =y}
—maXyzy,,.. (o) {t < i:hi(x) =yl
where Ymax(2) = argmax, [{t <i: hy(x) = y}|
3. Select D examples {(z7,y7), -, (¢}, y5)) from C;
having the smallest m(z) (¢ € C;) and let
Sipr = (21, 41), -, (@D, ¥p))-
4. Run A on S;41 and obtain hypothesis f;41.
End For
Output: Output final hypothesis given by:
hiin(2) = argmaxyey |[{t < M : he(z) =y}

Notice that, in QbagS, re-sampling i1s done directly
from the database, and past hypotheses are used to
judge what examples to sample next. In fact, this is
significantly simplified as compared to the original pro-
cedure of query by bagging (Qbag) of Abe and Mamit-
suka (1998): As can be seen in the pseudocode pre-
sented below,! in the original procedure the selected
examples are accumulated to form the training data
set (line 5). Then at each iteration, re-sampling is
done from this set of training data (line 1), and the re-
sulting hypotheses are used to judge what examples to
select next, using a committee-based uncertainty sam-
pling (lines 2 to 5). Since re-sampling is done at each
iteration, using embedded looping, this procedure is
computationally more demanding than the new ver-
sion QbagS, but may be more data efficient. This is
consistent with the fact that the original Qbag was
designed as a data efficient query learning method,
whereas QbagS is meant primarily as a computation-
ally efficient method for mining from large databases.

Algorithm: Query-by-Bagging (Qbag)
Input: Number of stages: M
Component learning algorithm: A
Number of re-sampling at each iteration: T'
Number of candidates at each iteration: R
Number of selected examples at each iteration: D
Candidates at the ¢-th iteration: Cj
Selected (training) examples at the i-th iteration: .S;
Initialization:
Randomly sample initial sample
S1 ={(x1,41), -+, (#p,yp)) from the database.
For:=1,... M
1. By re-sampling from S; with uniform distribution,
obtain sub-samples 57, .., 5% (of same size as 5;).
2. Run A4 on 51, .., 5% to obtain hypotheses hq, ..
3. Randomly select R examples C; from database.
4. For all z € C;, compute the margin m(z) by:
m(x) = maxy [{t < T : hy(x) = y}|
—MaXy £y () |{t <T: ht(x) = y}|
where Ymax(2) = argmax, [{t < T : he(z) = y}|
5. Select D examples ((#7,47),---, (¢}, y})) from C;
having the smallest values of m(z) (z € C})
and update the training data as follows.
Sit1 = append (S, {(27,47), -, ($})’ yE)))
End For
Output: Output final hypothesis given as follows.
hpin(2) = argmaxyey [{t < T : he(z) =y}
where hy (t =1,---,T) are the hypotheses of the
final (M-th) stage.

! There is one modification from the way Qbag was pre-
sented in (Abe & Mamitsuka, 1998): Now it is presented
for multi-valued prediction, while the original version was
assuming a binary-valued prediction.

A he.

2.2 Breiman’s Ivotes

We briefly review ‘Ivotes’ (importance sampling)
(Breiman, 1999), with which we compare the perfor-
mance of our method. Like QbagS, Ivotes takes a
sample from the database and applies the component
learning algorithm at each iteration, discards the data
and keeps just the hypotheses. When sampling, it uses
what is called ‘“mportance sampling.” In this sampling
method, if the label of an example is wrongly predicted
by its current combined hypothesis (out-of-bag predic-
tion), it is automatically chosen. If the prediction on
an example is correct, then 1t is selected with probabil-
ity e/(1—e), where e is the error probability (measured
using a separately reserved test set) of the current hy-
pothesis. Here, the out-of-bag prediction is done by
majority vote over those hypotheses trained on sub-
samples not containing the current example. Breiman
(1999) claims that this feature contributes greatly to
improving the performance of Ivotes, and proposes a
particular implementation method for computing out-
of-bag predictions: It keeps records of how many times
each label of each example in the database has been
predicted. We follow this implementation exactly.

3. Empirical Evaluation

We empirically evaluated the performance of the pro-
posed method and that of Ivotes, using a variety of
data sets. We used the following three types of data
sets.

1. A series of large scale synthetic data sets, gener-
ically referred to as Generator in (Agrawal et al.,
1993), often used as benchmark data for evaluat-
ing data mining methods.

2. A real world data set in the area of database mar-
keting of size roughly a million. In particular,
we used data for ‘churn’ analysis for an internet
provider.

3. A number of medium sized (tens of thousands)
data sets known as statlog data. They were used
in (Breiman, 1999) to evaluate the performance
of Ivotes.

In our experiments, we used both C4.5 (Quinlan, 1993)
and CART? as the component algorithm. Our eval-
uation was mainly done in terms of the total compu-
tation time to achieve a given prediction accuracy (on
separate test data), including disk access time. We
also compare the ‘final accuracy’ attained by each of

2 To be precise, we used a version of CART included in
the IND package due to Wray Buntine.

Table 1. Large-scale data summary

Data set Ftclasses # disc. atts # cont. atts #training samples #test samples
Generator 2 3 6 800000 200000
Churn 2 29 62 617551 - 617600 154351 - 154400

the methods. By ‘final accuracy,” we mean the ac-
curacy level reached for data sizes large enough that
the predictive performance appears to be saturating.>
For the evaluation on the real world data set, we also
used the measures of precision and recall, standard
performance measures in the field of information re-
trieval. Note that ‘recall’ is defined as the probability
of correct prediction given that the actual label is 1 (or
whatever label of interest), and ‘precision’ is defined
as the probability of correct prediction given that the
predicted label is 1.

In most of the experiments (except those using the
‘statlog’ data), the evaluation was done by five-fold
cross validation. That is, we split the data set into five
blocks of roughly equal size, and at each trial four out
of these five blocks were used as training data, and the
last block was reserved as test data. The results (pre-
diction accuracy, learning curves, precision and recall)
were then averaged over the five runs. Since the stat-
log data come with pre-specified test data, the average
was taken over five randomized runs. All of our exper-
iments were run on an Alpha server 4100 (466MHz,
512 MB).

3.1 Evaluation on Large Scale Data Sets

It is said in general (Provost & Kolluri, 1999) that
large scale data sets are those with sizes in the order
of a million. It is, however, difficult to find publically
available real world data sets having data sizes in the
order of a million.* We thus used a series of syn-
thetic data introduced in Agrawal et al. (1993) called
Generator. These data sets have been used often as
benchmark data in evaluating the scalability issues of
data mining methods (Gehrke et al., 1999; Rastogi &
Shim, 1998). The properties of these data sets are
summarized in Table 1.

? To be sure, we performed the ‘mean difference signifi-
cance test’ (See Section 3.1 for the definition) for the pre-
dictive accuracy attained at the end of each run and that
reached 1,000 seconds prior to that point. We found that
the significance level was typically around 0.2 and at most
0.5, and thus the difference was insignificant.

* The largest data sets we found were those in stat-
log. The largest ones in UCI ML Repository we could
find (mushroom and thyroid0387), for example, contain
less than 10,000 data.

Generator contains ten distinct functions for generating
the labels, taking a number of different forms. Here we
chose five out of the ten (Function 2, 5, 8, 9 and 10) on
which the predictive performance of ID3, as reported
by Agrawal et al. (1993) was relatively poor. Genera-
tor also has a parameter called ‘perturbation factor,’
which is used to randomly perturb the continuous val-
ued attributes. In our first set of experiments, we chose
to set the perturbation factor to be either 0.2 or 0.6.
For each of the five functions, we generated a data
set of size one million, and performed five-fold cross-
validation .’

Table 2. Summary of parameter settings in our experi-
ments

7t candidate samples # selected samples

Methods per iteration(R) per iteration(D)
QbagS 30000 3000
Ivotes - 1000

We note that there is a parameter to be tuned in Iv-
otes, namely the number of examples to be selected
at each iteration. As a test, we observed the predic-
tive performance of Ivotes on one of the five data sets
(Function 2), varying this parameter. It was observed
that the value of 1,000 was doing about the best, so
we set this parameter to be 1,000 in all of our experi-
ments. This is consistent with the observation in the
experiments reported in Breiman (1999) that the per-
formance of Ivotes improves up to 800 but appears to
be almost saturating. Parameters in the other meth-
ods that were used in our experiments are summarized
in Table 2. We remark that we did not make extensive
effort in optimizing these parameters.

We show part of the results of the above experimenta-
tion (with perturbation factor 0.2 and CART) in the
form of learning curves in Figure 1. Note that, in these
curves, the average predictive accuracy (on test data)
is plotted against the total computation time. We also

® For Generator and Churn, to be described later, we ran-
domly picked 10,000 out of the test data to evaluate the
predictive performance.

90 i i i 93
89.5 1 925
e W | 92 |
@88.5 t] <
S 88|l QbagS ——1 <915
g8rs 1l f lvotes —— g a1
3 87 / 3905
<865 1 f <
86 f |
85.5 | |
85 ‘ ‘ ‘ 89 —— ‘ ‘ ‘
0 3000 6000 9000 12000 0 2000 4000 6000 8000 10000
Computation time(seconds) Computation time(seconds)
F8 F9 F10
99 ; ; ; ; 93,5 ; : 97 ;
L N h] soo00000000
98.8; Mfﬂ 03 | e 9.5 somssssosespersttosseosos
_986 ¥] - 7] —
g ! Qbags —— 9ot 4 Quags g % f Qbags —— |
5984 Ivotes ——— 1 > 92 /] g $ 7 Ivotes ——-
Sogo | o 3 i 8955 1 7
—_ . r % —_ H —_ 4
§ ‘?f §91.5 + § f
i i
978 1, 005 It | 94.5
97.6 i i
- ‘ ‘ ‘ 90 ‘ ‘ ‘ ‘ 94 ‘ ‘ ‘ ‘
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Computation time(seconds)

Computation time(seconds)

Computation time(seconds)

Figure 1. Prediction accuracy of QbagS and Ivotes on Generator, averaged over five runs, plotted as function of computation

time.

give, in Table 3, figures that indicate the computation
time in seconds (and their ratios as compared to that
of QbagS) to reach the level of predictive performance
achieved by the method with the lower final accuracy.
From these results, it is seen that, in terms of the speed
for reaching the same level of accuracy, QbagS is fa-
vored over Ivotes in all cases (when using CART). The
speed-up factor achieved by these methods over Ivotes,
as measured by the amount of computation time they
take to reach a given performance level, is anywhere
from 2 to 30.

In terms of the ‘final prediction accuracy’, the results
were also favorable for QbagS. These results are also
summarized in Table 3, in which the final accuracies
reached by the two methods for the five functions and
the ‘Z’ values of the mean difference significance test
for the respective cases are exhibited. Here, the Z
values are calculated using the following well-known

formula (Weiss & Indurkhya, 1998):

acc(A) — ace(B)

var(A) var(B)
na - ng

where we let, in general, acc(A) denote the accuracy
estimate for method A, and var(A) the variance of
this estimate, and n4 the data size used for this es-
timate (5 in our case). For example, if Z is greater

than 2 then it is more than 95 per cent significant that
A achieves higher accuracy than B. For perturbation
factor 0.2 and using C4.5 as the component algorithm,
QbagS did significantly better than Ivotes in four out
of the five cases, and Ivotes did significantly better in
the other case. For perturbation factor 0.2 and using
CART, QbagS did significantly better than Ivotes in
one out of the five cases, slightly (insignificantly) bet-
ter in three cases, and Ivotes did slightly better in the
other case. When perturbation factor is set to 0.6 and
when using CART, QbagS did better than Ivotes in
all five cases, four out of them being statistically sig-
nificant. We can see, in these results; that for higher
values of perturbation factor, the significance of the
difference in the performance of the two methods be-
comes more pronounced. This is visualized in the two
graphs shown in Figure 2; one plots how the Z values
of the mean difference significance test vary as the per-
turbation factor is changed from 0.2 to 0.6 for the five
functions, and the other plots how the computation
time ratios change.

3.2 Evaluation on a Real World Data Set

To further verify the empirical findings reported in the
previous section, we have evaluated these methods us-
ing an actual data set in the area of database market-

Table 3. Generator: Final accuracies (%) and computation time to reach target accuracy (and ratios w.r.t. Ivotes),
averaged over five runs.
Perturb. | Component QbagS Ivotes
factor algorithm Func. | Final acc.(%) | Comp. time | Final acc.(%) Comp. time Z
0.2 C4.5 F2 88.46 423.1(1.0) 87.74 3363.5(14.61) 5.41
F5 92.64 230.2(1.0) 91.23 3687.7(16.01) 9.37
Fs8 99.05 99.65(1.0) 98.28 179.8(1.80) | 12.80
F9 92.62 5434.8(1.0) 93.06 | 1656.3(0.30) 3.12
F10 96.72 443.1(1.0) 96.23 5302.5(11.97) 6.18
CART F2 89.30 498.2(1.0) 89.06 7255.0(14.56) 1.87
F5 92.90 186.2(1.0) 91.91 5405.6(29.03) 6.20
Fs8 98.90 320.6(1.0) 98.92 8690.2(27.11) 0.31
F9 93.17 | 2514.8(1.0) 93.00 4747.8(1.89) 0.82
F10 96.58 | 1631.7(1.0) 96.48 5087.8(3.12) 1.37
0.6 CART F2 73.09 311.2(1.0) 71.43 7865.8(25.28) 7.03
F5 85.52 258.4(1.0) 84.33 2304.5(8.92) 7.68
Fs8 98.14 116.7(1.0) 97.65 7041.1(60.32) 3.51
F9 82.93 | 1524.7(1.0) 82.74 4732.8(3.10) 0.82
F10 90.50 341.5(1.0) 89.93 5692.1(16.67) 2.34
8 . 70
7 60 L
61 S 50t v
T
g ° T 40+
T 4 g
3 . 30 |
27] 3 207
1) 10 |
0 0 ¢

0.2 .
Perturbation factor

0.2 .
Perturbation factor

Figure 2. Significance test values Z (Left) and computation time ratios (Right) between QbagS and Ivotes on Generator,

plotted as functions of perturbation factor.

ing. More concretely, we have used data in a database
containing customer data of a certain internet provider
and used them to perform so-called ‘churn’ analysis,
that is, predicting those customers that are likely to
quit in the near future. The data we used consisted of
three parts: (i) data containing demographic data such
as the customers’ age, sex, address, etc.; (ii) monthly
access data, of the internet and various contents, from
the past six monthes; and (iii) the label information of
whether the customers quit in the month immediately
after the ending month of the monthly data of (ii).
The temporal data of (ii) were converted to a number
of continuous valued attributes. Overall, there were
close to a hundred attributes, a mixture of continuous
and discrete valued attributes. There were roughly
800 thousand records in the data that we used. These
properties of this data set, which we call Churn are
summarized in Table 1. Again, our evaluation was
done by five-fold cross-validation.

As before, we plot in Figure 3 the learning curves
of the competing methods, plotted against the total
computation time. Also, the final predictive accuracy
of each method and the speed-up factor measured in
terms of the total computation time required to reach a
given target accuracy are summarized in Table 4. It is
seen clearly in these results that the proposed methods
achieve statistically significant improvement in terms
of both the final prediction accuracy achieved, and the
computation time required to achieve a given accu-
racy. This tendency is seen to be more pronounced
than what we observed for Generator, which is consis-
tent with the fact that the noise level is inevitably high
in a real world data set.

Precision-recall curves for QbagS and Ivotes are also
shown in Figure 3. The graph shows the precision-
recall curves attained after approximately 7,000 sec-
onds of computation time for both methods when us-

95

90 r

85 QbagS ——

Ivotes -~
80

Accuracy (%)

75

70 H L L L
0 3000 6000 9000
Computation time(seconds)

12000

92
90 |
88 - |
86 | |
8a ||
82 |
80 |
78 |
76

|
PR
AR

I QbagS —— A
Ivotes |

Accuracy (%)

0 3000 6000 9000 12000 15000
Computation time(seconds)

1 : : : : :
QbagS(7000secs) ——
08 I Ivotes(7000secs) -+ |
!
|
S 06 [~
2 L
3 \
g 04
02| T
0 L L L L L L
0 01 02 03 04 05 06 07
Recall
1 : : : : :
QbagS(10000secs) ——
08 I Ivotes(14000secs) -+ |
|
S 06 [~
2 L
3 \
g 04t
02} [.
0

0 01 02 03 04 05 06 07
Recall

Figure 3. Churn: Learning curves (Left) and precision-recall curves (Right) using C4.5 (Top) and CART (Bottom).

Table 4. Churn: Final accuracies (%) and total computation time in seconds to reach target accuracy (and ratios) averaged

over five runs.

Component QbagS Ivotes

algorithm Final accuracy(%) | Computation time | Final accuracy(%) | Computation time A
C4.5 90.40 1207.3(1.0) 89.43 4946.3(4.10) 4.87
CART 90.80 1857.7(1.0) 90.28 12440.7(6.70) 2.83

ing C4.5, and after about 10,000 and 14,000 seconds
for QbagS and Ivotes respectively, when using CART.
One typical application of churn analysis is to take a
certain action to those members that are predicted to
be likely to quit soon. Although it all depends on the
cost-performance landscape of individual situations,
normally a relatively small subset is chosen, for which
a reasonably high precision can be achieved. In the
current problem, a reasonable point is, say recall 0.1.
At this value of recall, it is found that the precision of
QbagS i1s approximately 25 per cent better than that
of Ivotes when using C4.5, and 20 per cent better with
CART. This represents a sizable difference in business
terms.

3.3 Evaluation on Medium Sized Data Sets

We now report on our evaluation using medium sized
data sizes. For these experiments, we use the data
used in the Statlog project, and described in Michie
et al. (1994). We used four data sets from the Statlog
data: dna, sat, letter and shuttle, each sized 2000,

4435, 15,000 and 43,500. Note that these four data
sets were all used in the empirical evaluation done by

Breiman (1999).

We give the results of experimentation on these data
sets in Table 5. The figures give the (final) prediction
accuracy obtained by each method, this time includ-
ing the original Qbag and the component algorithm,
all averaged over five randomized runs. It is seen that,
for data sets of sizes in the range of tens of thousands,
QbagS still appears to be favored over Ivotes, but not
to the same statistical significance as for the large data
sets. For these data sets, in fact, the original Qbag
which keeps data from the past iterations, appears
to do better than both Ivotes and QbagS. Over all,
these results confirm that QbagS is especially suited
for large, noisy data sets.

4. Concluding Remarks

We have proposed a sampling method for data min-
ing that is especially effective for efficient mining from

Table 5. Statlog: Average Final Accuracies (%)

Comp.
Data Algo. QbagS | Qbag | Ivotes
dna C4.5 95.20 94.16 94.03
CART 95.30 95.23 94.27
sat C4.5 90.28 | 90.72 90.24
CART 88.93 | 91.23 88.95
letter C4.5 94.59 | 96.11 89.36
CART 89.22 | 95.40 88.50
shuttle | C4.5 99.87 | 99.99 99.97
CART 99.68 99.95 | 99.95

large, noisy data sets. The key property of our method
which contributes to this advantage is its sampling
strategy that does not make use of the label infor-
mation in the candidate instances. Interesting future
work 1s to characterize more systematically the condi-
tions (noise level and data size) under which the pro-
posed method works well, and better than importance
sampling in particular. It would also be interesting
to investigate the relationship and possibly combina-
tions between uncertainty sampling and importance
sampling and /or boosting, in the context of efficient
mining from large data sets.

Acknowledgements

The authors would like to thank Osamu Watanabe and
Carlos Domingo for invaluable discussions on the top-
ics of this paper. The authors would also like to thank
Dr. S. Doi, Dr. N. Koike and Dr. S. Goto of NEC Cor-
poration for making this research possible. Naoki Abe
was supported, in part, by the Grant-in-Aid for Sci-
entific Research on Priority Areas (Discovery Science)
1999 from the Ministry of Education, Science, Sports
and Culture, Japan.

References

Abe, N.,; & Mamitsuka, H. (1998). Query learning
strategies using boosting and bagging. Proceedings
of Fifteenth International Conference on Machine
Learning (pp. 1-9). Morgan Kaufmann.

Agrawal, R., Tmielinski, T., & Swami, A. (1993).
Database mining: A performance perspective. [EEE
Transactions on Knowledge and Data Engineering,

5, 914-925.

Breiman, L. (1996). Bagging predictors. Machine

Learning, 24, 123-140.

Breiman, L. (1999). Pasting small votes for classifica-
tion in large databases and on-line. Machine Learn-

ing, 36, 85-103.

Catlett, J. (1991). Megainduction: A test flight. Pro-
ceedings of Eighth International Workshop on Ma-
chine Learning (pp. 596-599).

Freund, Y., & Schapire, R. (1997).
theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and

System Sciences, 55, 119-139.

A decision-

Furnkranz, J. (1998). Integrative windowing. Journal

of Artificial Intelligence Research, 8, 129-164.

Gehrke, J., Ganti, V., Ramakrishnan, R., & Loh, W.-
Y. (1999). BOAT - Optimistic decision tree con-
struction. Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data (pp.

169-180). ACM Press.

Michie, D., Spiegelhalter, D.; & Taylor, C. (Eds.).
(1994). Machine learning, neural and statistical
classification. London: Ellis Horwood.

Provost, F., & Kolluri, V. (1999). A survey of meth-
ods for scaling up inductive algorithms. Knowledge
Discovery and Data Mining, 3, 131-169.

Quinlan, J. R. (1983). Learning efficient classifi-
cation procedures and their applications to chess
endgames. In R. S. Michalski, J. G. Carbonell and
T. M. Mitchell (Eds.), Machine learning: An arti-
ficial intelligence approach. San Francisco: Morgan
Kaufmann.

Quinlan, J. R. (1993). C4.5: Programs for machine

learning. San Francisco: Morgan Kaufmann.

Rastogi, R., & Shim, K. (1998). Public: A decision tree
classifier that integrates building and pruning. Pro-
ceedings of 24th International Conference on Very
Large Data Bases (pp. 404-415). New York: Mor-
gan Kaufmann.

Seung, H. S., Opper, M., & Sompolinsky, H. (1992).
Query by committee. Proceedings of 5th Annual
Workshop on Computational Learning Theory (pp.
287-294). New York: ACM Press.

Weiss, S. M., & Indurkhya, N. (1998). Predictive data

mining. San Francisco: Morgan Kaufmann.

