Query Learning Strategies using Boosting and Bagging

Naoki Abe

Hiroshi Mamitsuka

Theory NEC Laboratory, RWCP*
¢/o NEC C& C Media Research Laboratories
4-1-1 Miyazaki, Miyamae-ku, Kawasaki 216-8555 JAPAN
{abe, mami}@ccm.cl.nec.co.jp

Abstract

We propose new query learning strategies by
combining the idea of query by committee
and that of boosting [Sch90, FS95] and bag-
ging [Bre94]. Query by committee is a query
learning strategy which makes use of a ran-
domized component learning algorithm and
works by querying the function value of a
point at which the predictions made by many
copies of the component algorithm are max-
imally spread. The requirement of query by
committee on the component algorithm that
it be an ideal randomized algorithm makes
it hard to apply in practice when we have
only a moderately performing deterministic
algorithm. To address this issue, we bor-
row the ideas of boosting and bagging, which
are both techniques to enhance the perfor-
mance of an existing learning algorithm by
running it many times on a set of re-sampled
data and combining the output hypotheses
to make a prediction by (weighted) majority
voting. We propose two query learning meth-
ods, query by bagging and query by boosting,
which select the next query point by picking
a point on which the (weighted) majority vot-
ing by the obtained hypotheses has the least
margin. We empirically evaluate the perfor-
mance of these methods on a wide range of
real world data. Our experiments show that,
when using C4.5 as the component learning
algorithm and run on data sets in UCI Ma-
chine Learning repository, both query learn-
ing methods significantly improve data effi-
ciency as compared to both C4.5 itself and
boosting applied on C4.5. A typical increase
in data efficiency achieved was 2 to 4-fold.

*Real World Computing Partnership

1 Introduction

Query learning is a sub-area of machine learning at-
tracting increasing attention both in theory and in
practice with the expectation that it may bring down
both computational and sample complexities that
plague passive learners. (c.f. [LC94, CS94, LG94])
For example, there is a rich body of work on the algo-
rithmic approach to query learning as initiated by An-
gluin’s query learning model [Ang87]. Another promis-
ing approach is the Bayesian or information theoretic
approach to query learning [PK95, SOS92], in which a
query learner tries to maximize the information gain
on each query. Of the latter approach, ‘query by com-
mittee’ [SOS92] is an especially attractive and general
query learning strategy with theoretical performance
guarantee. In the present paper, we propose new vari-
ants of query by committee, which we call ‘query by
boosting” and ‘query by bagging,” by combining query
by committee with the techniques of boosting and bag-
ging.

‘Query by committee’ [SOS92] is a query learning
strategy which makes use of many copies of an ideal
randomized learning algorithm. More concretely, it
uses a number of copies of Gibbs algorithm (a random-
ized algorithm that picks a hypothesis from a given hy-
pothesis class according to the posterior distribution
and predicts according to it) and queries the func-
tion value of a point at which their predictions are
maximally spread. The idea is that, by choosing a
query point with maximum uncertainty of estimation
of its function value, the information gain can be max-
imized. Indeed, there is a theoretical guarantee of the
near-optimality of the data efficiency of this method,
but it is based on the assumption that the component
learning algorithm is Gibbs algorithm. This assump-
tion poses two problems when one tries to apply this
technique in practice: One is the problem of computa-
tional complexity, because Gibbs algorithms for inter-
esting hypothesis classes tend to be computationally
intractable. The other is that it cannot be applied on

a deterministic component learning algorithm. The
two methods we propose in the present paper, ‘query
by boosting’ and ‘query by bagging,’” are motivated to
address these two issues.

‘Boosting’ and ‘bagging’ are both techniques to en-
hance the performance of an existing learning algo-
rithm by running it many times on a set of re-sampled
data and combining the output hypotheses to make a
prediction. Bagging, due to Brieman [Bre94], is the
simpler of the two, and it works by re-sampling from
the input data with the same (uniform) distribution
and its final hypothesis is obtained by taking major-
ity vote over the predictions of the output hypotheses.
Boosting! [Sch90, FS95] is a more complicated method
that can be used to boost the performance of a rela-
tively weak learning algorithm by use of sophisticated
re-sampling on the training data. It does so by repeat-
edly re-sampling on the input training data, with the
sampling distribution varied each time so as to focus
more and more on the part of the training data on
which the previously obtained hypotheses did poorly
on. The final prediction of boosting is made by taking
a weighted majority (or average) of the predictions of
all the hypotheses thus obtained.

As noted earlier, one of the weakness of query by com-
mittee is that it cannot be applied on a deterministic
component algorithm. If the component learning al-
gorithm we have available is deterministic, the idea of
bagging offers a natural alternative; namely apply bag-
ging to obtain a set of hypotheses, let these hypothe-
ses predict on a set of candidate points, and pick the
point on which the predictions have the largest vari-
ance. When making a prediction, predict by majority
vote over all the hypotheses. Since query by bagging
introduces randomness in the form of re-sampling from
the input data, it can be used on a component algo-
rithm that is deterministic.

When the learning problem of interest is sufficiently
complex, efficient implementation of Gibbs algorithm
is not possible. If such is the case and the best known
learning algorithm does not have a very good perfor-
mance, then it makes sense to use boosting to enhance
its performance. Recall that the most notable charac-
teristic of boosting is its tolerance on the performance
of the component learning algorithm. Thus, appro-
priately combining the idea of boosting and query by
committee, we may obtain a query learning method
that is tolerant on the performance of the component
learning algorithm.

Recent experimentation using boosting has shown a re-
markable fact (e.g. [DSS92]) that even after boosting

!Boosting was first discovered by Schapire [Sch90] in
the context of proving the equivalence of ‘weak learnability’
with the strong PAC learnability. It was subsequently im-
proved by Freund [Fre90], and Freund and Schapire [FS95].

has achieved perfect prediction on the training data,
it keeps boosting its predictive performance on unseen
data. This seemingly contradicts known facts about
over-learning, but recently Schapire et al [SFBLI7]
have given an account of this fact. That is, even after
realizing perfect predictive performance on the train-
ing data, boosting keeps increasing its confidence of
prediction, or more specifically the difference between
the total weight assigned to the correct prediction and
that assigned to a wrong prediction. (This is called
the ‘margin’ of the prediction.) In their paper, they
prove that a hypothesis having a larger margin on
the training data performs better on unseen data as
well. Based on this observation, the method we pro-
pose here, query by boosting, selects as the next query
a point on which the margin obtained by the boosting
algorithm is minimum, and attempts to maximize the
uncertainty of prediction and hence the information
gain on each query.

We conducted experiments using real world data to
evaluate the performance of the proposed query learn-
ing methods. In particular, we tested them on a large
part of the UCI Machine Learning data repository, us-
ing Quinlan’s C4.5 as the component algorithm. Here
we note that testing query learning algorithms on these
databases is not possible in a strict sense, since not
all the query points can be answered. We therefore
used our query strategies as methods of selective sam-
pling to pick more informative queries from a fixed
set of training data. (c.f. [LG94]) On almost all the
data sets we tested these learning methods, both query
by boosting and query by bagging achieved significant
increase in data efficiency as compared to both C4.5
and boosting applied on C4.5. The increase in data
efficiency measured by the data size required by the
query learning methods to reach the same accuracy
achieved by C4.5 (near the end of the data set) was
anywhere from 2 to 5-fold. As compared to boosting
applied on C4.5, the increase in data efficiency of the
query methods was 2 to 4-fold on most data sets.

On one of the eight data sets above, tic-tac-toe, we
ran analogous experiments using a different compo-
nent learning algorithm — a randomized version of a
weighted majority prediction algorithm for learning n-
ary relations proposed in [ALN95] called WMP1. In
addition to the two query methods, we also tested the
original query by committee method, as the compo-
nent algorithm is now randomized. Tt was found that,
with randomized WMP1 as the component algorithm,
both query by boosting and query by bagging per-
formed better than query by committee.

Algorithm: Query-by-Committee(QBC)
Notation: In general, we use S} to denote the
unlabeled sample corresponding to S.
Input: Number of trials: N

Randomized component learning algorithm: A
Number of times A is called: T

Number of query candidates: R

A set of query points: @
Initialization: S; = (21, f(z1)) for random z;
For:i=1,..,N

1. Run A on S; T times to obtain hq, ..., hy.

2. Randomly generate a set of R points C' C Q \ S!
with respect to uniform distribution over @ \ S;.
3. Pick a point z* € C split most evenly: z* = arg
mingec |[{t < Tlhi(z) = 1} — [{t < Tlhi(z) = 0}
4. Query the function value at z* and obtain f(z*).

5. Update the past data as follows
Si41 = append(S;, (z*, f(z*)))
End For
Output: Output as the final hypothesis:
hyin(x) = arg maxyey |{t < Tlhi(x) = y}|
where h; are hypotheses of the final (N-th) stage

Figure 1: Query by Committee (QBC)

2 Query Learning Methods

2.1 Query by Committee

We briefly describe the original query by committee
method, generalized to use an arbitrary randomized
component algorithm. At any point in time, query by
committee runs the component algorithm on the past
data a number of times to obtain many hypotheses.
It picks the next query point by choosing from among
a set of randomly generated candidate points a point
such that the predictions by the hypotheses are split
most evenly. The details are given in Figure 1. Here,
if @ is a pre-determined set of points on which the
function values can be obtained, then the algorithm
as described is a method of selective sampling. If, on
the other hand, @ is set to the entire domain, then it
is a genuine query learning algorithm, which is free to
choose any point in the domain as a query point.

2.2 Query by Bagging

‘Bagging’[Bre94] re-samples from the input sample
with a fixed distribution, and the final hypothesis is
obtained by averaging the outputs of the hypotheses
thus obtained. This method is based on the idea that
prediction error consists of the ‘bias,” which is the es-
timation error necessitated by the input data size, and
the ‘variance’ which is due to the statistical variation
existing in the specific data. The claim is that bag-
ging can isolate the two factors and can minimize the

Algorithm: Query-by-Bagging(QBag)
Input: Number of trials: N
Component learning algorithm: A
Number of times re-sampling is done: T
Number of query candidates: R
A set of query points:)
Initialization: S; = (21, f(21)) for random z;
For:=1,..,N
1. By resampling according to uniform distribution
on S;, obtain sub-samples S1, .., S/ each of size m.
2. Run A on each sub-sample and obtain hy, ..., hp.
3. Randomly generate a set of R points C' C Q \ S;.
with respect to uniform distribution over @ \ S;.
4. Pick a point z* € C' split most evenly: z* = arg
mingec |[{t < Tlhi(z) = 1} — |{t < Tlhi(z) = 0}
5. Query the function value at z* and obtain f(z*).
6. Update the past data as follows
Si41 = append(S;, (z*, f(z*)))
End For
Output: Output as the final hypothesis:
hyin(x) = arg max,ey {t < Tlhi(x) = y}|
where h; are hypotheses of the final (V-th) stage

Figure 2: Query by Bagging (QBag)

variance component of the error. Query by bagging is
like query by committee, except it applies bagging on
the input sample and picks as the next query point a
point at which the predictions of the hypotheses are
most evenly split. The details of query by bagging are
also given in Figure 2.

2.3 Query by Boosting

We will now describe the query by boosting method
in detail. In query by boosting, we pick as the next
query point a point at which the weighted voting of
the final hypothesis obtained by boosting the compo-
nent learning algorithm has the least ‘margin.” When
the target function is 0,1-valued, this means that the
query point is one for which the difference between the
total weight for the value 1 and that for 0 is minimum
among all candidate points. We give the details of this
procedure in Figure 3, where we also supply the details
of AdaBoost [FS95] for completeness.

Note that the original query by committee, query by
bagging, and query by boosting form a natural pro-
gression. In query by committee, all the samples are
tdentical, and the variance of the component algo-
rithm’s predictions is taken with respect to the ran-
domness that exists within the component algorithm.
In query by bagging, subsamples are obtained from
the input sample using an identical distribution, and
the variance of the component algorithm’s predictions
is with respect to the randomness in re-sampling. In

Algorithm: Query-by-Boosting(QBoost)
Input: Number of trials: N
Component learning algorithm: A
Number of times re-sampling is done: T
Number of query candidates: R
A set of query points: Q
Initialization: S; = (zq, f(z;
For:=1,..,N
1. Run AdaBoost on input (S;, 4, T') and get:
hfin(z) = arg maxyey th(z‘) log ,@L
2. Randomly generate a set of R points C C Q\ S].
with respect to uniform distribution over @ \ S!.
3. Pick a point z* € C' with the minimum margin
2" = argmineec |), (z)= olog 3 Br = 2hs (z)=1 log 7, N |
4. Query the function value at z* and obtain f(z*).
5. Update the past data as follows
Siy1 = append(S;, (z*, f(z*)))
End For

)) for random z;

Output: Output hy;, in the last stage as the output.

Subroutine: AdaBoost [FS95]
Input: Sample: S = {(z1,¥1), -, (@i, %), -
(Here, assume Vy; € Y = {0,1}.
Component learning algorithm: A
Number of times re-sampling is done: T
Initialization: Vi < m,D;(z;) = L
Fort=1,.,T

(.’Em) ym))

1. Run A on a sample of size m generated w.r.t. D;.

2. Let its output hypothesis be h;.

3. Compute its error rate €; by:

=2 n, (z:)#y: Dy(;)

4 Calculate Bt by B = 12 -

5. Update the re-sampling distribution D,y ;:
Dt+1(xi) = M%& if ht(l‘z) =Y
Diyi(z;) = Dy(2;) otherwise

(Here Z is a normalization constant satisfying

2izt, m Deg1(zi) = 1.)

Output: Output as the final hypothesis:
hgin(z) = arg max,cy th(x):y log %

Figure 3: Query by boosting (QBoost)

attributes | missing
name # ex. | disc. | cont. | values
liver-disorders 345 - 6 -
ionosphere 351 - 34 -
house-votes-84 435 16 -)
wdbc 569 - 32 -
crx 690 9 6 o
breast-cancer-wisconsin 699 9 -)
pima-indians-diabetes 768 - 8 -
tic-tac-toe 958 9 - -

Table 1: The eight data sets used in our experiments.

query by boosting, the re-sampling distribution itself
is changed depending on the properties of the obtained
hypotheses, and the variance of the component algo-
rithm’s predictions is measured with respect to the
uncertainty involved in weighted voting by the various
hypotheses.

3 Experimental procedures

We evaluate the proposed query learning methods on
the learning problem for concepts (or 0,1-valued func-
tions) over a number of attributes, which are either
binary, discrete or numerical. A special case of this
is when all the attributes are discrete, and the target
function can be regarded as an n-ary relation over n
finite sets. In our experiments, we use existing data
sets for training and test data, without an explicitly
defined target function. Since it is not possible to use
query learning algorithms genuinely as query learners
in this setting, we use them as methods for selective
sampling, that 1s, ways to select a smaller set of more
effective data from a large data set.

The data sets we used in our experiments were bor-
rowed from the machine learning data repository of
University of California at Irvine.? Of the large num-
ber of data sets available from the repository, we se-
lected 8 (not all) data sets satisfying the following con-
ditions: (1) The target function is 0,1-valued; (2) The
data size is moderate (more than 300 and less than
1,000); Table 1 summarizes the data sets we selected
and their basic characteristics.

On these data sets, we compared the performance of
C4.5, boosting applied on C4.5, query by boosting ap-
plied on C4.5, and query by bagging applied on C4.5.
For each data set, we performed 10-fold cross valida-
tion, with one-tenth of the available data (selected ran-
domly) reserved as the test data and the rest used as
the training data, or query data. For each of the 10

2This data set, abbreviated as the ICI ML repos-
itory in what follows, is available at URL address:
“http://www.ics.uci.edu/ mlearn/MLRepository.html”

pairs of training and test data sets, we averaged the
results over two randomized runs, a total of 20 runs
for each data set.>

The query learning algorithms are used to pick the
next query point from the training (query) data with-
out replacement and are tested using the (separate)
test data. When the specified number of candidates
exceeded what is left of the training data, we went
on with as many candidates as there were left. On
one occasion, we also examined their predictive perfor-
mance on the query data, from which query learners
have selected a subset to learn from, instead of using
the separate test data.

Finally, the parameters 7" and R in all the query learn-
ing methods were set at 7' = 20 and R = 100 in all of
our experiments.

4 Experimental Results

We now discuss the results of our experiments on the
UCI Machine Learning Repository. Figure 5 plots the
learning curves obtained for the four learning methods
on each of the eight data sets. Each graph plots the
predictive accuracy (in percentage) of the four learning
methods measured using the separate test data at ev-
ery 50 trials. Tt is clearly seen from these graphs that
in all eight data sets, the two proposed query learn-
ing methods achieve significant improvement in data
efficiency as compared to C4.5. One can see that at
very early stage in learning, say around 50 to 150 tri-
als depending on the data set, the prediction accuracy
of the query learning methods reaches a level that is
achieved by C4.5 only towards the end of the data set.
Table 2 gives concrete figures that quantify this ob-
servation. Here, ‘the target error rate’ was calculated
using the error rate of C4.5 in the last 100 trials.*
Then, we checked to see how many trials it took for
all four methods to reach that error rate. In parenthe-
ses, we also exhibit the ratio of the number of trials
required by each of the methods to that of C4.5. One
can see that typically the data efficiency is improved
by a factor of 2 to 4.

The speed-up achieved by the two query learning
methods compared against boosting applied on C4.5
is less dramatic but still significant. From the
graphs, one can see that on five of the eight data
sets, namely breast-cancer-wisconsin, tic-tac-toe, iono-
sphere, house-votes-84 and wdbc, the advantage of the
query methods over boosting is clear, while on the

®The results involving WMP1 were obtained by averag-
ing over 10 runs, not 20 runs.

“For this calculation, we fed a randomly chosen test
example after each trial, and the prediction error of the
current trial was calculated by the average prediction error
over the last 50 test trials.

other three 1t is less obvious. These three data sets,
crx, liver-disorders, and pima-indians-diabetes appear
to have a common feature: That a certain level of ac-
curacy is achieved with relatively few examples, but
from then on the accuracy is hardly improved as the
data size increases. It may be that the target function
of these data sets is sufficiently noisy that no learning
method can break this barrier. The increase in data
efficiency achieved by the query learning methods in
comparison to boosting is summaried in Table 3, sim-
ilarly as before.

All the evaluation discussed thus far has been based
on the prediction accuracy measured using test data,
which are disjoint from the training data or the query
data from which the query learning methods selected
query points. As we remarked earlier, this is selec-
tive sampling and not genuine query learning. If we
measure the prediction accuracy of query learning al-
gorithms with respect to the query data, then this
would translate to a genuine query learning scenario,
except the function being learned is solely defined by
the query data, only on those points that are in the
data. We took this view point and examined the learn-
ing curves for the four methods with respect to this
measure. Figure 6 plots these learning curves for the
eight data sets as before. One can more clearly see the
effect of query learning here — with respect to all but
one data set (pima-indians-diabetes), the accuracy of
the two query learning methods rise much faster than
either C4.5 or boosting on C4.5.) typically achieving
an increase in data efficiency of fator 3 to 6.

On one of the eight data sets, tic-tac-toe, we ran the
analogous experiments as above using a randomized
version of WMP1 as the component learning algo-
rithm. Figure 4 plots the prediction accuracy achieved
by each of the five methods at the end of every 50 tri-
als. Note that query by committee can now be applied
because we use a randomized component algorithm.
Here much of the tendency observed using C4.5 car-
ries over. Notice, however, that here the two proposed
methods, query by boosting and query by bagging,
out-perform query by committee. Also, in this case
query by boosting seems to do better than query by
bagging, at least for a wide range of data sizes. The
relative performance of the competing query learning
methods appear to depend on the component learn-
ing algorithm (and the learning problem). Note fur-
ther that boosting and the query methods applied on
WMP1 achieve much higher accuracy than those ap-
plied on C4.5 on this particular problem. Interestingly,
WMP1 itself does not have a higher accuracy than
C4.5, but both boosting and query by boosting applied
on WMP1 are significantly more effective than those
applied on C4.5.. This observation suggests that on
component algorithms and problems on which boost-
ing is effective, query by boosting may do better than

target

query by | query by total | error rate

name bagging | boosting | boosting C4.5 size (C4.5)
Tiver-disorders 86(0.30) | 96(0.34) | 108(0.38) | 286(1.0) | 310 0.3685
ionosphere 91(0.39) | 97(0.41) | 143(0.61) | 236(1.0) | 315 0.0935
house-votes-84 65(0.21) | 72(0.24) | 145(0.48) | 303(1.0) | 391 0.0465
wdbc 82(0.26) | 88(0.28) | 208(0.66) | 314(1.0) | 512 0.054
crx 64(0.50) | 100(0.79) | 119(0.94) | 127(1.0) | 621 0.171
breast-cancer-wisconsin 86(0.40) 83(0.39) | 209(0.98) | 213(1.0) 629 0.072
pima-indians-diabetes 67(0.44) 63(0.41) 81(0.53) | 152(1.0) 691 0.2895
tic-tac-toe 236(0.39) | 243(0.40) | 308(0.51) | 609(1.0) | 862 0.1445

Table 2: Data efficiency increase achieved with respect to C4.5

target

query by | query by total | error rate

name bagging | boosting | boosting C4.5 size | (boosting)
Tiver-disorders 111(0.86) | 126(0.98) | 129(1.0) 310 0.3305
ionosphere 121(0.50) | 119(0.49) | 243(1.0) - 315 0.073
house-votes-84 71(0.34) | 136(0.65) | 210(1.0) | 366(1.74) | 391 0.04
wdbc 97(0.32) | 130(0.43) | 300(1.0) | 506(1.69) | 512 0.0455
crx 86(0.60) | 140(0.97) | 144(1.0) - 621 0.146
breast-cancer-wisconsin | 103(0.34) 92(0.31) | 301(1.0) | 391(1.30) 629 0.0495
pima-indians-diabetes 99(0.56) | 191(1.09) | 176(1.0) - 691 0.2475
tic-tac-toe 438(0.52) | 517(0.62) | 836(1.0) - | 862 0.053

Table 3: Data efficiency increase achieved with respect to boosting

100 100 T T T T T T T
95 95
90 90
g 8| g 8|
> >
& 80 g gol
g B ¥ Q by boosting — | g vr s Q by boosting —
70 |+ Q by bag_gmg ””” . 70 F /4 Q by bagg!ng ””” .
Q by committee -----)i boosting -----
L boosting - | L C45 -
65 WMP2 —-- s
60 1 1 1 1 1 1 1 1 1 60 1 1 1 1 1 1 1
0 50 100150200 250300350400450500 0 100 200 300 400 500 600 700
training data # training data

Figure 4: Prediction accuracy on test data on tic-tac-toe. Left: Using WMP1 as the component algorithm,
Right: Using C4.5 as the component algorithm.

the other query learning methods as well.

The time complexity of all three query learning meth-
ods we considered is of the order O(NTR - F(N)),
where F(N) is the time complexity of the component
algorithm when run on an input sample of size N.
This is a tractable but significant increase in compu-
tation cost as compared to the component algorithm.
The judgement of whether the data efficiency brought
about by these methods justifies the additional com-
putational burden would depend on the exact applica-
tion under consideration. Also note that both query
by committee and query by bagging are parallelizable
with respect to 7" and R, but query by boosting is par-
allelizable only with respect to R, and not 7. Thus,
only when query by boosting buys significantly more
data efficiency, would it be the method of choice.

5 Concluding Remarks

We proposed two variants of query by committee that
can be applied on an arbitrary component algorithm,
be it deterministic or randomized, by incorporating
the ideas of boosting and bagging. Experiments on
data sets from the UCI Machine Learning repository
demonstrated that, when using them with C4.5 as
the component algorithm, the proposed query learn-
ing methods achieve significant increase in data effi-
ciency as compared to both C4.5 and boosting applied
on C4.5. On one of the data sets which can be cast
as an n-ary learning problem, we tested these methods
using a randomized weighted majority prediction algo-
rithm for n-ary relations as the component algorithm,
and found that the proposed methods performed bet-
ter than query by committee. In the near future, we
plan to carry out more systematic evaluation to verify
the robustness of the proposed query methods on the
choice of the component algorithm and the learning
problem.

A cknowledgement

We thank Dr. S. Goto, Dr. S. Doi of NEC and Dr. K.
Takada of NIS for their support. We would also like to
thank those involved with the UCI Machine Learning
repository for making the data sets available.

References

[ALN95] N. Abe, H. Li, and A. Nakamura. On-
line learning of binary lexical relations us-
ing two-dimensional weighted majority al-
gorithms. In Proc. 12th Int’l. Conference

on Machine Learning, July 1995.

D. Angluin. Learning regular sets from
queries and counterexamples. Inform. Com-
put., 75(2):87-106, November 1987.

[Ang87]

[Bre94]

[CS94]

[DSS92]

[Fre90]

[FS95]

[LC94]

[LG94]

[PK95]

[Sch90]

[SFBLY7]

[SOS92]

L. Breiman. Bagging predictors. Techni-
cal Report 421, University of California at
Berkeley, 1994.

Mark W. Craven and Jude W. Shavlik. Us-
ing sampling and queries to exctract rules
from trained neural networks. In Machine
Learning: Proceedings of the 11th Interna-
tional Conference, pages 37-45, 1994.

H. Drucker, R. Schapire, and P. Simard.
Improving performance in neural networks
using a boosting algorithm. In Advances
in Neural Information Processing Systems.
Morgan Kaufmann, 1992.

Y. Freund. Boosting a weak learning al-
gorithm by majority. In Proc. 3rd Annu.
Workshop on Comput. Learning Theory,
pages 202-216. Morgan Kaufmann, San
Mateo, CA, 1990.

Y. Freund and R. Schapire. A decision-
theoretic generalization of on-line learning
and an application to boosting. In Pro-
ceedings of the Second Furopean Conference

on Computational Learning Theory (Euro-
COLT’95), pages 23-37, 1995.

David D. Lewis and Jason Catlett. Het-
erogeneous uncertainty sampling for super-
vised learning. In Machine Learning: Pro-
ceedings of the 11th International Confer-
ence, pages 148-156, 1994.

David D. Lewis and William A. Gale. A
sequential algorithm for training text clas-
sifiers. Proceedings of 17th Annual Interna-
tional ACM-SIGIR Conference of Research
and Development in Information Retrieval,
pages 3—12, 1994.

G. Paass and J. Kindermann. Bayesian
query construction for neural network mod-
els. In Advances in nueral information pro-
cessing systems 7, pages 443-450, 1995.

R. E. Schapire. The strength of weak learn-
ability. Machine Learning, 5(2):197-227,
1990.

R. Schapire, Y. Freund, P. Bartlett, and
W. S. Lee. Boosting the margin: A new
explanation for the effectiveness of vot-
ing methods. In Proceedings of the Four-
teenth International Conference on Ma-
chine Learning (ICML’97), pages 322-330,
1997.

H. S. Seung, M. Opper, and H. Som-
polinsky. Query by committee. In Proc.
5th Annu. Workshop on Comput. Learning
Theory, pages 287-294. ACM Press, New
York, NY, 1992.

68
66
64
62
60
58

accuracy (%)

56
54
52

98
97
96
95
94
93
92
91
90
89

accuracy (%)

87
86
85
84
83
82
81
80

accuracy (%)

liver-disorders

Q by boosting —
Q by bagging ---- b

boosting -----
C45 .

50 100 150 200
training data

house-votes-84

Q by boosting
Q by bagging ----
boosting ----- 7
Cc4.5

50 100 150 200 250
training data

Crx

9
0 50 100150200250300350400450500

training data

pima-indians-diabetes

76

74

72

70

accuracy (%)

68

66

Figure 5: Learning curves for four learning methods

Q by boosting —
Q by bagging -----
boosting -----
C45]

100 200 300 400 500 600 700
training data

accuracy (%)

accuracy (%)

accuracy (%)

accuracy (%)

ionosphere
94 T T T
92 -
90
88 - B
86 - B
.~ Q by boosting —
84 |- Q by bagging - g
boosting -----
82 - C4.5 4
80 I 1 1
0 50 100 150
training data
wdbe
97 T T T T T T T
96
95 -
94
93
9 B _
Q by boosting —
o1 Q by bagging ——- b
| boosting ----- i
90 cas
89 - B
88 1 1 1 1 1 1 1

training data
breast—cancer—w1scons1n

0 50 100 150 200 250 300 350 400

98 T T T T T T T T

96

94

92 -
! Q by boosting —

90 - Q by bagging -—- g

boosting -----
C45
88 B
86 I" 1 1 1 1 1 1 1 1
0 50 100150200250300350400450500
training data
tic-tac-toe

100 T T T T T T T

95

90

85 -

80

[ERy Q by boosting —

70 L Q by bagging —-— i
/ boosting -----

65 F - C4.5

60 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700

training data

on the UCI ML Repository.

liver-disorders ionosphere

T T T 100 T T T
90 - Q by boosting -4
Q by bagging ---- o 98
boosting -----
85 - cas R % -
g T g o |
> 80 | - >
3 & 92
5 5
S 75 E g 90 - ’ b
© © ~" Q by boosting —
88 - -~ Qbybagging - 1
70 B . boosting -----
g 86 I c4.5 b
65 v I I 84 L I I
0 50 100 150 200 0 50 100 150 200
training data # training data
house-votes-84 wdbe
100 T T T T 100 T T T T T T T
9 | - 5
98 98 e A
= = 97 T e
S 96| I S 9t o .
> IPUCEEE g > /
3 S 8 951 L -
g 9l . . 3 9l o _ i
S Q by boosting — S Q by boosting —
Q by bagging - 93 /.7 Qbybagging ——]
92 boosting ----- . 92 I boosting ----- .
C45 C4.5
91 . 4
90 1 1 1 1 90 i 1 1 1 1 1 1
0 50 100 150 200 250 0 50 100 150 200 250 300 350 400
training data # training data
crx breast-cancer-wisconsin
98 T 100
96 98 L
94 %
g2 g
z 90 S z 9r
s s /)
3 88 e y 3 92F Q by boosting — 4
q 86| - Qby boosting g 8 b Q by bagging -~
/. Qby bagging - or ooeAs T
841 /. boosting ----- 7 4 :
82 |- :;" C45 a 88 | T
O ; 1 1 1 1 1 1 1 1 86 1 1 1 1 1 1 1 1 1
0 50 100150200250300350400450500 0 50 100150200250300350400450500
training data # training data
pima-indians-diabetes tic-tac-toe
100 T T T T T T 100 =]
95 95 —
= 90F _. 9%} .
g g
> 85 > 85 B
Q Q
5) 5 by boosti
S 80 . B S 80 Q by boosting — A
8 Q by boosting — g O by bagging -
75 Q by bagging ———— g 75 | boosting ----- i
7 boosting ----- C4.5
ok - c45 i 70 L i
65 1 1 1 1 1 1 65 : 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
training data # training data

Figure 6: Learning curves on ‘query data’ for four learning methods on the UCI ML repository.

