
Information Processing and Management xxx (2009) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

Information Processing and Management

journal homepage: www.elsevier .com/ locate/ infoproman
Field independent probabilistic model for clustering multi-field documents

Shanfeng Zhu a,b,*, Ichigaku Takigawa c, Jia Zeng d, Hiroshi Mamitsuka c

a Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai 200433, China
b School of Computer Science, Fudan University, 220 Handan Road, Shanghai 200433, China
c Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
d Department of Computer Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong

a r t i c l e i n f o
Article history:
Received 13 May 2008
Received in revised form 28 December 2008
Accepted 21 March 2009
Available online xxxx

Keywords:
Document clustering
Finite mixture model
Multivariate Bernoulli model
Multinomial model
Field independent clustering model
0306-4573/$ - see front matter � 2009 Elsevier Ltd
doi:10.1016/j.ipm.2009.03.005

* Corresponding author. Address: School of Compu
+86 21 65654253.

E-mail addresses: zhushanfeng@gmail.com (S. Zh
Mamitsuka).

Please cite this article in press as: Zhu, S., et a
Processing and Management (2009), doi:10.101
a b s t r a c t

We propose a new finite mixture model for clustering multiple-field documents, such as
scientific literature with distinct fields: title, abstract, keywords, main text and references.
This probabilistic model, which we call field independent clustering model (FICM), incor-
porates the distinct word distributions of each field to integrate the discriminative abilities
of each field as well as to select the most suitable component probabilistic model for each
field. We evaluated the performance of FICM by applying it to the problem of clustering
three-field (title, abstract and MeSH) biomedical documents from TREC 2004 and 2005
Genomics tracks, and two-field (title and abstract) news reports from Reuters-21578.
Experimental results showed that FICM outperformed the classical multinomial model
and the multivariate Bernoulli model, being at a statistically significant level for all the
three collections. These results indicate that FICM outperformed widely-used probabilistic
models for document clustering by considering the characteristics of each field. We further
showed that the component model, which is consistent with the nature of the correspond-
ing field, achieved a better performance and considering the diversity of model setting also
gave a further performance improvement. An extended abstract of parts of the work pre-
sented in this paper has appeared in Zhu et al. [Zhu, S., Takigawa, I., Zhang, S., & Mamitsuka,
H. (2007). A probabilistic model for clustering text documents with multiple fields. In Pro-
ceedings of the 29th European conference on information retrieval, ECIR 2007. Lecture notes in
computer science (Vol. 4425, pp. 331–342)].

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Document clustering uses unsupervised learning algorithms to group documents into different topics, and performs
exploratory analysis on text collections (Ribeiro-Neto, 1999). Based on the structure of the final solution, clustering methods
are divided into partitional (flat) clustering and hierarchical clustering (Jain, Murty, & Flynn, 1999). Similarity-based (discrim-
inative) methods and model-based (generative) methods have been two major strategies for learning clusters (Zhong &
Ghosh, 2003). The similarity-based methods, such as the classical k-means algorithm, measure the similarity between doc-
ument pairs, and group similar documents into the same cluster. In document clustering, each document is usually repre-
sented by a vector of weighted selected words according to vector space model, and the similarity between two
documents is calculated by Euclidean distance or the cosine of the angle between two corresponding vectors. On the other
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hand, model-based methods can generate the documents in the same cluster by an identical model, which is usually spec-
ified a priori according to the characteristic of the data set. Without explicitly computing similarity between each document
pair, the model-based methods usually have a less computational complexity compared to the similarity-based methods.
Additionally they provide an intuitive explanation for each cluster through the corresponding model (Zhong & Ghosh, 2003).

Various model-based clustering algorithms have already been proposed to tackle the problem of clustering high dimen-
sional and very sparse text documents. Multivariate Bernoulli model (BM) (McCallum & Nigam, 1998) and multinomial mod-
el (MM) (McCallum & Nigam, 1998) are the two most popular models. Zhong and Ghosh (2003) proposed a unified
framework for probabilistic model-based clustering, which divides a model-based approach into, a model re-estimation step
and data re-assignment step. In their recent study (Zhong & Ghosh, 2005), they compared the performance of three different
model-based clustering algorithms (BM, MM and von Miser–Fisher model Banerjee, Dhillon, Ghosh, & Sra, 2003) with differ-
ent strategies of assigning documents to clusters. They found that MM and von Miser–Fisher outperformed BM in clustering
15 text datasets. In addition, soft and deterministic annealing (DA) based assignments achieved better performance than
hard assignment in most of datasets. Meila and Heckerman (2001) also compared soft assignment with hard assignment
in multinomial model clustering text documents, and obtained similar results. Rigouste, Cappé, and Yvon (2007) have
proposed multinomial mixture models to cluster documents, where each document is generated by a mixture of several
MMs.

In this paper, we are particularly interested in probabilistic model-based partitional clustering algorithms. To the best of
our knowledge, existing model-based algorithms treat each document as an integrated object. However, the document is
usually composed of several distinct fields in reality. One typical example is the multiple-field scientific document consti-
tuted by the title, abstract, keywords, main text, and references. Although each field has a common objective of presenting
the document’s topic, it plays a different role, and thus has different distributions over various vocabularies. For example, the
title is usually very short with around ten words summarizing the topic of the document, while the abstract is much longer
with about 100–200 words briefly describing the motivation of the work, the proposed solution and the experimental result.
Another typical example is the news report, which includes two important fields: title and body. Similar to the scientific doc-
ument, the title in the news report summarizes the topic, and the body gives a more detailed description. Moreover, the first
paragraph of the body most likely outlines what has happened in the news.

Here we propose a new probabilistic model referred to as field independent clustering model (FICM) to explicitly handle
each field in a document separately. FICM is an extension of a finite mixture model to consider the distinct word distribution
in each field. It then allows us to integrate all of them together. Given the cluster that a document belongs to, FICM assumes
that each field of this document is conditionally independent. The generative model for each field can be different according
to characteristics of data. FICM outperforms other classical model-based methods for the following reasons. First, it inte-
grates the discriminative ability of each field by modeling each field separately. Second, we can further select the most suit-
able model for each field, and thus strengthen the performance of FICM. The basis of FICM is the conditional independence
assumption of each field. This type of conditional independence has been widely employed and has achieved great successes
in information retrieval and machine learning (Domingos & Pazzani, 1996; Lewis, 1998). For instance, the classical MM and
BMs are also based on this kind of assumption, where, given the cluster the document belongs to, each word in the document
is generated, being conditionally independent. We stress that the corresponding models work very well in practice, although
this kind of assumption may not follow reality exactly. This is because that the conditional independence assumption may
change the posterior probabilities of each cluster, but the cluster with the maximum posterior probability is often
unchanged.

We conducted extensive and thorough experiments by applying FICM to clustering both scientific documents and news
reports. We focused on clustering biomedical literature (Jensen, Saric, & Bork, 2006), which has been gaining more and more
attention. MEDLINE (Wheeler et al., 2005) is the largest biomedical literature database for biomedical text mining. For each
document (record) in MEDLINE, many distinct fields are provided, such as title, authors, institution, source, MeSH (Medical
Subject Headings) and abstract, among which title, abstract and MeSH are the most informative. MeSH (Nelson, Schopen,
Savage, Schulman, & Arluk, 2004) is a controlled vocabulary thesaurus defined by the National Library of Medicine for index-
ing documents in the MEDLINE database. It includes a set of description terms organized in a hierarchical structure. To make
a reliable evaluation, we have built 100 datasets randomly generated from TREC 2004 and 2005 Genomics track, respec-
tively, which makes use of 10-years MEDLINE records as the corpus. In addition, we also created 100 news report datasets
based on Reuters-21578 to evaluate the performance of FICM.

We first compared the performance of FICM with those of BM and MM in the experiment because of their wide usage. In
the simplest case, the direct extension of BM and MM by applying the same model (BM or MM) for all fields in FICM has
made a significant improvement over the original models in the majority of cases, being statistically significant in some
cases. For example, over the TREC 2004 Genomics data, the direct extension of MM by FICM outperformed MM in 63 out
of total 100 datasets, and 15 of them were statistically significant at the 95% confidence level. From this result, we found
that the significant improvement in performance comes from the integration of the discriminative ability of each field.
We can then improve the performance of FICM further by assigning a suitable component model to each field. For example,
over the TREC 2004 Genomics data, FICM outperformed MM in 98 out of total 100 datasets, and 78 of them were statistically
significant at the 95% confidence level by assigning MM to the abstract field and BM to the title and the MeSH fields. We
further investigated the component model assignment problem to achieve the best clustering performance, by exploring
all eight possible combinations of component assignments in FICM for clustering TREC 2004 and TREC 2005 Genomics data.
Please cite this article in press as: Zhu, S., et al. Field independent probabilistic model for clustering multi-field documents. Information
Processing and Management (2009), doi:10.1016/j.ipm.2009.03.005
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We propose a basic strategy for this problem:‘‘to assign the best model to each field, keeping the diversity of each component
model”, and experimental results demonstrated the effectiveness of this strategy. Finally, we explore the effect of a method,
which we call ‘Field Weighting’, where a field is weighted more by assuming that the words in the field appear more often.
Experimental results showed that weighting the title field moderately further improves the clustering performance of FICM.

The remainder of the paper is organized as follows. In Section 2, we propose the FICM for clustering multiple-field doc-
uments. We also discuss the superiority and optimal setting of component model of FICM. Section 3 briefly describes the
three data collections, TREC Genomics track 2004, 2005 and Reuters-21578, as well as the procedure of generating 300 test
datasets from these three collections. We summarize the evaluation criteria and experimental procedures in Section 4. Sec-
tion 5 presents the detailed experimental results, which demonstrates the superiority of FICM and the effectiveness of com-
ponent model selection strategy. Section 6 draws conclusions and envisions future works.
2. Field independent clustering model (FICM)

In this section, we first briefly introduce the classical BM and MM in turn, and then describe the proposed FICM in detail.
In particular, we discuss the superiority as well as the time and space complexities of FICM.

To fix notation, let D be a set of documents, and d be a document in D. Let Z be the set of classes (topics) of D; z be a class in
Z, and K be the number of the clusters in the dataset. C is the set of fields, and c is a specific field in C, which could be a title,
abstract or MeSH in this work. Let Dc be a set of documents only considering field c, and dc be field c (e.g. title) of a document
d. We denote W as the set of words appearing in D;Wc as the set of words appearing in Dc , and w as a word. Let Nw;d be the
frequency of word w appearing in document d, and Nw;dc be the frequency of w appearing in dc. Let Bw;d be 1 if Nw;d > 0, other-
wise 0. Let Bw;dc be 1 if Nw;dc > 0, otherwise 0.

2.1. Mixture model for document clustering

All three models, BM, MM and the proposed FICM, belong to one important category of generative models: mixture mod-
els. The basic assumption for generative models for document clustering is that each document d in D is independently and
identically generated by the model (Duda, Hart, & Stork, 2001). That is, the probability of generating document dataset D is
the product of the probability of generating every document d in D:
Please
Proces
pðDÞ ¼
Y
d2D

pðdÞ
Moreover, the mixture model assumes that, each document is generated by a finite mixture distribution of the form
pðdÞ ¼

PK
i¼1pipðd; hiÞ, where pi is the prior probability of cluster i;K is the number of components and pðd; hiÞ is the proba-

bility of generating d in cluster i, which depends on a parameter vector hi. Using the notation defined above, the probability
of generating document d can also be written as
pðdÞ ¼
X
z2Z

pðzÞpðdjzÞ
The specific model structure of pðdjzÞ could be further hypothesized, for example, as a multivariate Bernoulli distribution or
multinomial distribution. Then the basic goal of the mixture model is to use all documents in the dataset to estimate the
model parameters, which are usually learned by maximum-likelihood (ML) estimation and the Expectation-Maximization
(EM) algorithm (Dempster, Laird, & Rubin, 1977). With these model parameters, we can easily calculate the cluster member-
ship of each document pðzjdÞ. The differences between the BM, MM and FICM models lie in the detailed hypothesis employed
to generate a document, i.e., the specific probability structure of pðdjzÞ.

2.2. Multivariate Bernoulli model (BM)

In BM, each document is represented by a binary vector, which denotes the presence or absence of each word in the doc-
ument. The basic assumption is that, given the cluster that a document belongs to, the occurrence of each word in the doc-
ument is assumed to be conditionally independent. For a document in class z, the probability of word w appearing in the
document is pðwjzÞ, while the probability for the absence of w in the document is 1� pðwjzÞ. We then try to maximize
the log-likelihood of generating the whole set of documents D. The ML estimators of this model can be obtained by the
following EM algorithm, which repeats the E- and M-steps alternatively until some stopping condition is satisfied. In the
M-step, we employ a Laplacian prior to avoid zero probabilities, which is a form of maximum a posteriori (MAP) parameter
estimation (DeGroot, 1970).

Probabilistic structure:
LðDÞ ¼
X
d2D

log pðdÞ ¼
X
d2D

log
X
z2Z

pðzÞpðdjzÞ
 !

¼
X
d2D

log
X
z2Z

pðzÞ
Y
w2d

pðwjzÞBw;d ð1� pðwjzÞÞ1�Bw;d

 ! !
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E-step:
Please
Proces
pðzjdÞ / pðzÞpðdjzÞ ¼ pðzÞ
Y
w2d

pðwjzÞBw;d ð1� pðwjzÞÞ1�Bw;d

� �
M-step: (with Laplacian smoothing)
pðzÞ /
X
d2D

pðzjdÞ

pðwjzÞ ¼ 1þ
P

d2DpðzjdÞ � Bw;d

2þ
P

d2DpðzjdÞ
2.3. Multinomial model (MM)

In contrast to BM, MM assumes that, given the cluster that a document belongs to, every occurrence of each word in the
document is assumed to be conditionally independent. Given a cluster z, it generates each word in a document indepen-
dently with constraint

P
w2W pðwjzÞ ¼ 1. The probabilistic structure of multinomial model and its corresponding E- and M-

steps are shown below.
Probabilistic structure:
LðDÞ ¼
X
d2D

log pðdÞ ¼
X
d2D

log
X
z2Z

pðzÞpðdjzÞ
 !

¼
X
d2D

log
X
z2Z

pðzÞ
Y
w2d

pðwjzÞNw;d

 ! !
E-step:
pðzjdÞ / pðzÞpðdjzÞ ¼ pðzÞ
Y
w2d

pðwjzÞNw;d
M-step: (with Laplacian smoothing)
pðzÞ /
X
d2D

pðzjdÞ

pðwjzÞ ¼ 1þ
P

d2DpðzjdÞ � Nw;d

jWj þ
P

w02W

P
d2DpðzjdÞ � Nw0 ;d
2.4. Field independent clustering model (FICM)

In spite of different assumptions for document representation and generation, both BM and MM treat the occurrence of
each word at the document level rather than the field level. Conversely, the basic idea of FICM is that, given the cluster to
which a document belongs, each component field of a document is conditionally independently generated. Although in prac-
tice a document may not fully obey this rule, this kind of independence assumption has been widely used successfully in
machine learning and information retrieval (Domingos & Pazzani, 1996; Lewis, 1998). In fact, this kind of assumption is also
employed in the classical BM and MMs, which assume that, given the cluster to which a document belongs, each word in the
document is conditionally independently generated by the underlying probabilistic models. Under the assumption that each
field is generated independently, the probability of generating a document d is given as follows:
pðdÞ ¼
X
z2Z

pðzÞpðdjzÞ ¼
X
z2Z

pðzÞ
Y
c2C

pðdcjzÞ
Here pðdcjzÞ is the probability of generating the field c of document d given the underlying cluster z. In the simplest case of
having only two clusters z1; z2, the likelihood-ratio LR of assigning d into z1 rather than z2 can be calculated by the following
formula:
LR ¼ pðz1jdÞ
pðz2jdÞ

¼ pðz1Þ
pðz2Þ

� pðdjz1Þ
pðdjz2Þ

¼ pðz1Þ
pðz2Þ

�
Y
c2C

pðdcjz1Þ
pðdcjz2Þ

ð1Þ
Since pðz1Þ=pðz2Þ is the ratio of the prior distribution of clusters z1; z2 in the dataset, LR is determined by
Q

c2Cðpðdcjz1Þ=
pðdcjz2ÞÞ, which is the product of the discriminative ability of each field. If we assume each cluster has the same prior dis-
tribution, LR will be a direct integration of the discrimination value of each field. Thus the strength of FICM relies on the inte-
gration of the clustering ability of each field, which can be further improved by choosing a good probabilistic model for each
field. We can see that FICM is more like a framework, whose implementation depends on the probabilistic model used for
each field. In this work, the component models are constrained into BM and MM. However, it can be easily extended to other
probabilistic models. Let Cb be the set of fields modeled by the BM, and Cm be the set of fields modeled by the MM. We can
derive the probabilistic structure of FICM as below, and show the E- and M-steps of the EM algorithm to estimate the param-
eters of this model.
cite this article in press as: Zhu, S., et al. Field independent probabilistic model for clustering multi-field documents. Information
sing and Management (2009), doi:10.1016/j.ipm.2009.03.005
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Probabilistic structure:
Please
Proces
LðDÞ ¼
X
d2D

log pðdÞ ¼
X
d2D

log
X
z2Z

pðzÞpðdjzÞ
 !

¼
X
d2D

log
X
z2Z

pðzÞ
Y
c2Cb

pðdcjzÞ �
Y

c02Cm

pðdc0 jzÞ
 ! !

¼
X
d2D

log
X
z2Z

pðzÞ
Y
c2Cb

Y
w2dc

pðwjz; cÞBw;dc ð1� pðwjz; cÞÞ1�Bw;dc �
Y

c02Cm

Y
w2dc0

ðpðwjz; c0ÞNw;dc0 Þ

0
@

1
A

0
@

1
A

E-step:
pðzjdÞ / pðzÞpðdjzÞ ¼ pðzÞ
Y
c2Cb

pðdcjzÞ �
Y

c02Cm

pðd0cjzÞ

¼ pðzÞ
Y
c2Cb

Y
w2dc

pðwjz; cÞBw;dc ð1� pðwjz; cÞÞ1�Bw;dc

� � Y
c02Cm

Y
w2dc0

ðpðwjz; c0ÞNw;dc0 Þ
M-step: (with Laplacian smoothing)
pðzÞ /
X
d2D

pðzjdÞ

pðwjz; cÞ ¼ 1þ
P

d2DpðzjdÞ � Bw;dc

2þ
P

d2DpðzjdÞ if c 2 Cb

pðwjz; c0Þ ¼
1þ

P
d2DpðzjdÞ � Nw;dc0

jWc0 j þ
P

w02W

P
d2DpðzjdÞ � Nw0 ;dc0

if c0 2 Cm
In the simplest case, we can use the same probabilistic model for all fields in FICM, such as Cb ¼ C or Cm ¼ C, which is called
as Field Independent Clustering Bernoulli Model (FICBM) or Field Independent Clustering Multinomial Model (FICMM),
respectively.

2.5. Superiority of FICM

As shown in Eq. (1), FICM assumes that each field has a certain degree of discriminative ability, and the overall clustering
performance could be improved by integrating each field’s discriminative information. It is analogous to ensemble learning,
which combines a set of individually trained classifiers for improving the overall performance on novel examples (Polikar,
2006). Ensemble learning has been successfully applied in many classification problems, and recently has also been used for
clustering problems (Ghosh, 2002). Although both FICM and ensemble learning rely on the component learner (model) to
achieve a better performance, the fundamental difference is that FICM directly integrates the discriminative ability of each
component in the framework of the generative model for clustering, while ensemble learning computes the final clustering
result by aggregating a set of different clustering results, which are obtained by each component learner, respectively.
Dietterich (2000) analyzed the success of ensemble learning from the statistical, computational and representational point
of view, and Hansen and Salamon (1990) summarized that the necessary and sufficient condition for the superiority of an
ensemble of classifiers over any single classifier is that these component classifiers are accurate and diverse. Similarly, we
think that these two conditions for the component model also hold for FICM for achieving the better clustering performance.
Each component model should accurately describe document topic in order to bring certain benefits to the final clustering
result. Additionally, diversity of component models can reduce the bias caused by a single component model, because dif-
ferent component models may assign the same document to different clusters. Therefore, we have the basic principle of the
component model design in FICM: ‘‘Assign the best model to each field, and in the meanwhile maintain the diversity of each
component model”.

2.6. A ‘Field Weighting’ extension: Weighting fields differently

To further improve the performance of FICM, we weigh (scale) each field by assuming that the words in each field appear
more often. This kind of approach has also been employed by other researchers. Recently Li, Xu, and Zhang (2007) have stud-
ied the problem of clustering blog documents of the World Wide Web (WWW). Each blog document consists of three com-
ponents: the title, body and comments of the blog pages. They used the k-means clustering algorithm to cluster blog
documents with assigning different weights to different components. Their experimental results indicated that assigning
a large weight value to the blog comments produced a better clustering solution. In their method, each blog document
was still deemed as a vector, and was a weighted sum of all three vectors, representing the title, body and comments, respec-
tively. On the other hand, FICM models keeps fields being conditionally independent, and integrates them as a whole in a
probabilistic framework. In spite of significant difference, the idea of assigning different weights to different fields can be
also applied in FICM.

For a field dc and a cluster z, if the occurrence of each word in dc is multiplied by kc , which can be deemed as weighting
this field by kc , then the probability of generating this weighted field by MM will be pðdcjzÞkc . In terms of BM, we can assume
cite this article in press as: Zhu, S., et al. Field independent probabilistic model for clustering multi-field documents. Information
sing and Management (2009), doi:10.1016/j.ipm.2009.03.005



Table 1
Time and space complexities.

Model Time Space

BM OðjZj � jDj � jWjÞ OðjDj � jWjÞ
MM OðjZj � jDj � jWjÞ OðjDj � jWjÞ
FICM OðjCj � jZj � jDj � jWjÞ OðjCj � jDj � jWjÞ
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that field dc happens kc times, instead of only once, then the probability of generating these kc fields by BM will be pðdcjzÞkc ,
too. With this approach, the probability of generating d in FICM will be as follows:
1 http
2 http
3 http

Please
Proces
pðdÞ ¼
X
z2Z

pðzÞpðdjzÞ ¼
X
z2Z

pðzÞ
Y
c2C

pðdcjzÞkc
Then we can explore the effect of assigning different kc to dc , which we call ‘Field Weighting’.

2.7. Time and space complexities

Table 1 summarizes the time and space complexities of BM, MM and FICM. The most time-consuming part of BM is com-
puting pðzjdÞ and pðwjzÞ, which is OðjZj � jDj � jWjÞ. As for the space complexities, besides the space for input dataset D, we
only need to keep space for pðzÞ; pðzjdÞ and pðwjzÞ. The space complexity is then upper-bounded by
jDj � jWj þ jZj � jDj þ jZj � jWj. Normally, jZj is far smaller than jDj and jW j, and so it can be simplified as OðjDj � jW jÞ. We can
easily see that MM has the same time and space complexities as BM. For FICM, the most time-consuming part is computing
pðzjdÞ and pðwjz; cÞ. Since jWcj 6 jWj, the time complexity of FICM is upper-bounded by OðjCj � jZj � jDj � jW jÞ. Regarding the
space complexities of FICM, we need to keep each field of the D and the space for saving pðzÞ; pðzjdÞ, as well as pðwjz; cÞ, which
is upper-bounded by OðjCj � jDj � jWjÞ. Although FICM has slightly higher time and space complexities than BM and MM with
considering each field explicitly, it can take advantage of integrating discrimination ability of each field to improve the clus-
tering performance.
3. Datasets

To examine the performance of the proposed FICM, we have built evaluation datasets from three collections:

(1) TREC Genomics track 2004 and 20051 (Hersh et al., 2004; Hersh, Cohen, Bhupatiraju, Johnson, & Hearst, 2005);
(2) Reuters-21578 news collection.2

The Genomics track of the TREC3 conference provides a testbed and benchmark for comparing different information retrie-
val systems for biomedical documents. There are totally 4,591,008 documents (MEDLINE records from year 1994 to 2003) in the
TREC Genomics track corpus for 2004 and 2005. In the 2004 track, biologists defined 50 relatively independent topics, while in
the 2005 track, biologists must additionally follow a semantic template to define 50 topics. In both tracks, biologists manually
assessed the relevance of retrieved records, and obtained a set of reliably relevant documents for each topic. The Reuters-21578
news collection contains 21,578 news stories which appeared on the Reuters newswire in 1987. There are totally 135 topics, and
one document may belong to multiple topics.

In the Genomics track 2004 and Genomics track 2005, we extracted not only the whole text of each record, but also three
distinct fields (title, abstract and MeSH) of each record. In Reuters-21578, we used the first paragraph of the news body as a
distinct field, because it usually gives the summary of the news analogous to the abstract in a scientific document. Thus we
extracted two distinct fields for clustering, title and abstract (the first paragraph of the news body). In all three sources, we
did not consider those topics associated with only nine or fewer documents, and removed those documents with empty
fields or relevant to more than one topic, and finally retained 39 topics (4400 documents) in the Genomics track 2004, 24
topics (2317 documents) in the Genomics track 2005 and 42 topics (8574 documents) in the Reuters-21578, respectively.
In the Reuters-21578, the two largest topics, ‘‘earn” and ‘‘acq”, have respectively 3735 and 2125 documents, which are much
larger than the other 40 topics which have at most 355 relevant documents. To avoid the dominance of these two topics in
the dataset, we only retained all other 40 topics (2714 documents) for evaluation.

From these filtered topics, we have built two sets of datasets based on the TREC Genomics tracks of 2004 and 2005, and
one set of datasets based on the Reuters-21578, which are called as the Genomics2004, Genomics2005 and Reuters1987 col-
lections, respectively. For a robust comparison, each collection includes 100 datasets, which were generated from the cor-
responding source by randomly choosing three or more (no more than 12) topics. With a specific number of topics, we
built 10 different datasets. Compared with other randomly generated document datasets from MEDLINE (Yoo & Hu,
://ir.ohsu.edu/genomics/.
://www.daviddlewis.com/resources/testcollections/reuters21578/.
://trec.nist.gov/.
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Table 2
Summary of statistical characteristics of Genomics2004, Genomics2005 and Reuters1987. The ‘min of all 100’, ‘mean of all 100’ and ‘max of all 100’ refer to the
minimum, average and maximum value of each feature, respectively, out of all 100 datasets in each collection.

Collection Data Nd W K Nl Balance Nt Na Nm Wt Wa Wm

Genomics2004 T200412a 1687 4288 12 165.3 0.0281 9.1 113.9 40.4 942 3951 1230
Genomics2004 min of all 100 133 879 3 138.3 0.0216 6 93.4 33.2 97 774 251
Genomics2004 max of all 100 1960 4630 12 175.9 0.5625 9.8 120.3 48 1044 4290 1381
Genomics2004 mean of all 100 860.2 2812.3 7.5 161 0.1056 8.3 109.3 40.9 543.7 2597.1 790.1

Genomics2005 T200512a 1163 3153 12 155 0.029 8.8 106.2 38.4 662 2906 890
Genomics2005 min of all 100 71 570 3 132.8 0.0211 5.6 92.8 28.3 60 485 158
Genomics2005 max of all 100 1469 3442 12 165.1 0.6667 8.9 111.3 41.1 727 3168 950
Genomics2005 mean of all 100 690.7 2214.4 7.5 148.9 0.0711 8.0 103 35.3 400.6 2025.3 608.8

Reuters1987 R198712a 714 915 12 19 0.0338 4 14.3 – 322 858 –
Reuters1987 min of all 100 52 116 3 12 0.0282 2.3 8.6 – 2.6 107 –
Reuters1987 max of all 100 1232 1280 12 19.6 0.619 4.4 14.6 – 529 1198 –
Reuters1987 mean of all 100 500.8 622.3 7.5 18.0 0.1002 3.8 13.4 – 223.8 575 –
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2006), Genomics2004 and Genomics2005 are of high quality, where the topic of each document was assessed manually by
the biologists. In the pre-processing step, we removed stop words, carried out case folding and tokenized the documents
using the Porter’s stemming algorithm (Porter, 1980). Similar to Zhong and Ghosh (2005), we eliminated any (stemmed)
word that appears in less than three documents. The same procedure was also applied to the words in each field.

Table 2 summarizes the statistical characteristics of Genomics2004, Genomics2005, and Reuters1987, where Nd is the
number of documents, W is the number of distinct words (tokens), K is the number of classes, Nl is the average number
of words in each document, balance is the size ratio of the smallest class to the largest class, NtðNa;NmÞ is the average number
of words in the title (abstract, MeSH) field, and WtðWa;WmÞ is the number of distinct words in the title (abstract, MeSH) field.
Each dataset in Genomics2004 and Genomics2005 is named by combining an initial alphabet ‘‘T”, the year, the number of
topics, and the order of the dataset. For example, ‘‘T200412a” represents the first dataset with twelve topics generated from
the TREC Genomics track 2004. Similarly, each dataset in Reuters1987 is named by combining the initial alphabet ‘‘R”, the
year, the number of topics, and the order of this dataset. Table 2 shows that Genomics2004 varies greatly in some important
characteristics: the number of documents varies from 133 to 1960, the number of classes from 3 to 12, the balance from
0.022 to 0.563 and the number of distinct words in each dataset from 879 to 4630. Compared with Genomics2004, Genom-
ics2005 is slightly smaller but also has large variations. In contrast, Reuters1987 is the smallest in terms of the average
length and the average number of documents in each dataset. The number of documents ranges from 52 to 1232, the number
of distinct words from 116 to 1280, and the balance from 0.0282 to 0.619. Overall, the diversity of Genomics2004, Genom-
ics2005 and Reuters1987 makes them very suitable for comparing different clustering algorithms.

4. Evaluation criteria and experiment design

In this section, we describe the criterion based on the normalized mutual information to evaluate the proposed FICM. Fur-
thermore, we discuss how to compare the performance of different models using our new performance representation form,
S-Pair.

4.1. Normalized mutual information (NMI)

We used external measures as evaluation criteria in document clustering. External measures evaluate the clustering re-
sult using the correct (true) class labels of the dataset, which is not provided during the clustering processes. Well-known
external measures include purity, average entropy, F-measure and mutual information. Ghosh (2003) compared these exter-
nal measures, and showed that mutual information is a superior measure over other external measures. Both purity and
average entropy favor large number of clusters, while F-measure is biased towards coarser clusterings. Therefore, we used
the normalized mutual information (NMI) to compare the performance of FICM with the other models. Normalized mutual
information (NMI) is calculated by the following formula:
Please
Proces
NMI ¼ IðX; YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðXÞ � HðYÞ

p

where X and Y are the predicted clusters and the correct class labels, respectively, IðX; YÞ is the mutual information between
X and Y, and HðXÞ and HðYÞ are the entropy of X and Y, respectively. In practice, Zhong and Ghosh (2003, 2005) proposed a
sample estimate to calculate the NMI,
NMI ¼
P

h;lnh;l log n�nh;l
nhnl

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

hnh log nh
n

� � P
lnl log nl

n

� �q ð2Þ
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where n is the total number of documents in the whole collection, nh is the number of documents in class h (standard), nl is
the number of documents in cluster l (predicted), and nh;l is the number of documents in both class h and cluster l. The NMI
value ranges from zero to one, where an NMI value of zero means that the result is equal to random partitioning, and an NMI
value close to one means that the result is almost identical to the true class labeling.

4.2. Model comparison: S-Pair

In Genomics2004 and Genomics2005, each document consists of three fields, title, abstract and MeSH, while in Reu-
ters1987, each document consists of two fields, title and abstract. When the BM is applied on the documents with title field
only, abstract field only, MeSH field only and all fields, we denote these models as B-title, B-abstract, B-mesh and B-whole,
respectively. When the MM is used, the corresponding models are denoted as M-title, M-abstract, M-mesh and M-whole,
respectively. As described in Section 2, FICM is a framework where the specific implementation depends on the component
models assigned to each field. Since we focus on two popular probabilistic models, BM and MM, there are 23 ¼ 8 possible
implementations of FICM for clustering datasets in Genomics2004 and Genomics2005, and there are 22 ¼ 4 possible imple-
mentations of FICM for clustering datasets in Reuters1987. To make a distinction, each specific implementation of FICM is
denoted by a combination of an initial alphabet F, the character ‘-’ and a number of alphabets, where each representing a
model used in this field. The character ‘b’ and ‘m’, represent the BM and the MM, respectively. For example, ‘F-mmm’ stands
for a specific implementation of FICM, FICMM, where all three fields are modeled by MM. Table 3 lists the abbreviations of
some models and their corresponding meanings.

To make a fair comparison, the same stop criterion for the EM algorithm was adopted for all the models: the relative
change of the maximum log-likelihood in two consecutive iteration is less than 0.001% or the number of iterations of the
EM algorithms exceeds 30. In addition, the number of classes, K, was given as a priori parameter in all the experiments. More-
over, to reduce the possible bias caused by a random initial partition, each experiment was carried out 100 times, and the
means, standard deviations and the paired t-test were used to compare different models. The comparison of two different
models, h1 and h2, is carried on clustering 100 datasets of Genomics2004, Genomics2005, and Reuters1987. The number
of the datasets that h1 outperforms h2 is denoted by Nh1>h2 , in which the number of those datasets with statistically signif-
icant improvement at the 95% confidence level is denoted by Nh1>h2 ;þ. Similarly, the number of datasets that h2 outperforms
h1 is denoted by Nh2>h1 , in which the number of datasets with statistically significant improvement at the 95% confidence
level is denoted by Nh2>h1 ;þ. Thus for comparing h1 with h2 on each collection, we can obtain a pair of two numbers

þ Nh1>h2 ;þ
Nh1>h2

;� Nh2>h1 ;þ
Nh2>h1

� �
. Here we call it Significant Pair, for short S-Pair, of comparing h1 with h2. Please note

Nh1>h2 þ Nh2>h1 ¼ 100 because there are 100 datasets in each collection. We can say that h1 outperforms h2 (h1 > h2) if and
only if Nh1>h2 > Nh2>h1 and Nh1>h2 ;þ P Nh2>h1 ;þ.

To show the integrated power of FICM, we divided the datasets in two types in the following manner: We first call the
datasets on which FICM outperforms the classical model (BM or MM on the entire text) superior datasets and the other data-
sets are called neutral datsets. If a component model can also obtain a better clustering result over superior datasets than over
neutral datasets, we may say that the performance of FICM can be achieved by the good performance of this component
model. To check this hypothesis, we focused on two simplest implementations of FICM: FICBM and FICMM. For example,
for FICBM, we used the performance of B-whole (BM over the entire text) as the baseline, and the power of each component
model was represented by a relative measure, the ratio of the clustering performance of the component model to the base-
line, which we call the relative discriminative ability (RDA) of this field hereafter. That is, for the title field, RDAtitle can be com-

puted as NMIB-title
NMIB-whole

. Similarly, for this example, we can compute RDAabstract and RDAMeSH for the abstract field and MeSH. We can
Table 3
Model abbreviations.

Abbreviation Meaning

BM Multivariate Bernoulli model
MM Multinomial model
FICM Field independent clustering model
FICBM Applying BM to all fields in FICM
FICMM Applying MM to all fields in FICM
B-title Using BM on title only
B-abstract Using BM on abstract only
B-mesh Using BM on MeSH only
B-whole Using BM on whole text
M-title Using MM on title only
M-abstract Using MM on abstract only
M-mesh Using MM on MeSH only
M-whole Using MM on whole text
F-bmb Applying BM to the first and third field, and MM to the second field in FICM
F-bbb Applying BM to all three fields in FICM
F-mb Applying MM to the first field, and BM to the second field in FICM

Please cite this article in press as: Zhu, S., et al. Field independent probabilistic model for clustering multi-field documents. Information
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then compute the total RDA over all fields as RDA ¼ RDAtitleþRDAabstractþRDAMeSH
3 for the case of three fields: title, abstract and MeSH.

This is possible for FICMM by using M-whole as the baseline. Similarly, for the case of only two fields, title and abstract, this

RDA is given as RDA ¼ RDAtitleþRDAabstract
2 . We denote the RDA for superior datasets and neutral datasets by RDAsup and RDAneu,

respectively.

5. Experimental results

Experimental results include two parts. In the first part, we compared BM and MM with their direct extension, FICBM and
FICMM. We found that FICBM (FICMM) outperformed B-whole (M-whole) consistently in all three collections, which demon-
strated the effectiveness of FICM, even in the simplest configuration. In the second part, we further examined different com-
binations of component models in FICM, and obtained some insights into the component field configurations.

5.1. FICBM and FICMM

5.1.1. Comparison of B-title, B-abstract, B-mesh, B-whole and FICBM
We compared the performance of the BM-based clustering models. In Genomics2004 and Genomics2005, FICBM is de-

noted by F-bbb since it consists of three different fields, while in Reuters1987 with two different fields, FICBM is denoted
by F-bb. Table 4 illustrates the performance of different models in terms of NMI in Genomics2004, Genomics2005, and Reu-
ters1987. For each collection, it presented the result on one example dataset in the collection, as well as the average result
over all 100 datasets. For the example dataset (or the average of all datasets), we used bold face to highlight the model with
the highest NMI. Experimental results showed that FICBM achieved the highest average NMI (0.756, 0.723 and 0.497) in all
three collections, respectively. Table 5 presented a comparison of these models by the paired t-test for indicating the statis-
tical significance of improvement. The experimental results showed that FICBM outperformed B-whole consistently for all
three collections, with S-Pair (+41/80,�0/20) in Genomics2004, S-Pair (+63/95,�1/5) in Genomics2005 and S-Pair (+73/
89,�1/11) in Reuters1987.

5.1.2. Comparison of M-title, M-abstract, M-mesh, M-whole and FICMM
We compared the performance of MM-based clustering models and FICMM: F-mmm (or F-mm for Reuters1987). Table 6

presents the experimental result of these models on one example dataset and the average of all 100 datasets for Genom-
ics2004, Genomics2005 and Reuters1987. We can see that FICMM achieved higher NMI than M-whole in all three collections.
For example, with Genomics2004, FICMM achieved the highest NMI of 0.740, which was followed by M-whole of 0.736. In
addition, interestingly, for Genomics2005 and Reuters1987, M-title (using MM on the title only) obtained the highest average
NMI out of all five models, which suggests that only a few distinguished words in the title are effective for document clus-
tering. We further compared these models in terms of the significance of improvement by paired t-test. Table 7 gives the
results for each collection. We found that FICMM outperformed M-whole consistently in all three collections, with S-Pair
(+15/63,�0/37) in Genomics2004, S-Pair (+12/67,�3/33) in Genomics2005 and S-Pair (+69/94,�0/6) in Reuters1987.

5.1.3. The superiority of FICBM over B-whole and FICMM over M-whole relies on the integration of discriminative ability of each
component model

In the above two rounds of experiments, the direct extension of BM and MM by FICM (FICBM and FICMM) outperformed
the corresponding original models (B-whole and M-whole) significantly, and the improvement of FICBM over B-whole was
Table 4
Performance of B-title, B-abstract, B-mesh, B-whole and FICBM (F-bbb for Genomics2004 and Genomics2005 or F-bb for Reuters1987) in terms of NMI
(mean ± standard deviation).

Collection Data B-title B-abstract B-mesh B-whole F-bbb (F-bb)

Genomics2004 T200412a .630 ± .03 .734 ± .04 .739 ± .03 .756 ± .04 .782 ± .04
Genomics2004 Mean of all 100 .628 ± .06 .723 ± .07 .715 ± .05 .743 ± .06 .756 ± .06
Genomics2005 T200512a .671 ± .05 .697 ± .05 .634 ± .03 .706 ± .04 .745 ± .04
Genomics2005 Mean of all 100 .671 ± .06 .693 ± .07 .656 ± .05 .697 ± .07 .723 ± .07
Reuters1987 R198712a .300 ± .07 .359 ± .06 – .357 ± .05 .369 ± .07
Reuters1987 Mean of all 100 .446 ± .07 .466 ± .07 – .460 ± .07 .497 ± .08

Table 5
The comparison of B-title, B-abstract, B-mesh, B-whole and FICBM(F-bbb in Genomics2004 and Genomics2005 or F-bb in Reuters1987) in terms of S-Pair.

Collection B-whole > B-title B-whole > B-abstract B-whole > B-mesh F-bbb (F-bb) > B-whole

Genomics2004 (+92/95,�2/ 5) (+53/80,�6/20) (+61/74, 13/26) (+41/80,�0/20)
Genomics2005 (+53/68,�25/32) (+22/56,�13/44) (+75/84,�9/16) (+63/95,�1/ 5)
Reuters1987 (+57/70,�25/30) (+ 2/36,�11/64) – (+73/89,�1/11)
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Table 6
Performance of M-title, M-abstract, M-mesh, M-whole and FICMM (F-mmm in Genomics2004 and Genomics2005 or F-mm in Reuters1987) in terms of NMI
(mean ± standard deviation).

Collection Data M-title M-abstract M-mesh M-whole F-mmm (F-mm)

Genomics2004 T200412a .740 ± .03 .781 ± .03 .716 ± .03 .790 ± .03 .795 ± .04
Genomics2004 Mean of all 100 .709 ± .05 .719 ± .06 .676 ± .05 .736 ± .06 .740 ± .06

Genomics2005 T200512a .755 ± .02 .754 ± .03 .603 ± .03 .758 ± .03 .758 ± .03
Genomics2005 Mean of all 100 .723 ± .05 .702 ± .06 .588 ± .05 .702 ± .06 .705 ± .06

Reuters1987 R198712a .413 ± .04 .423 ± .03 – .407 ± .03 .430 ± .03
Reuters1987 Mean of all 100 .493 ± .05 .482 ± .06 – .473 ± .06 .492 ± .06

Table 7
The comparison of M-title, M-abstract, M-mesh, M-whole and FICMM(F-mmm in Genomics2004 and Genomics2005 or F-mm in Reuters1987) in terms of S-Pair.

Collection M-whole > M-title M-whole > M-abstract M-whole > M-mesh F-mmm (F-mm) > M-whole

Genomics2004 (+64/76,�15/24) (+61/89,�0/11) (+89/94,�1/6) (+15/63,�0/37)
Genomics2005 (+17/26,�57/74) (+13/50,�10/50) (+95/97,�2/3) (+12/67,�3/33)
Reuters1987 (+23/33,�50/67) (+ 8/32,�35/68) – (+69/94,�0/ 6)
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especially remarkable. As discussed in Section 4, we can compare RDAsup of FICBM (and FICMM) with RDAneu of that. Through
this comparison, we can check if there is a significant difference between the superior and neutral by paired t-test. Note that
we used RDA of the three field case for Genomics2004 and Genomics2005, while that of the only two field case for Reu-
ters1987. As shown in Table 8, the upper three rows are by FICBM and the lower three rows are by FICMM. In all six cases,
the RDAsup was higher than RDAneu. Moreover, in four of them, the difference was statistically significant at the 95 % confi-
dence level (p-value less than 0.05), and one of them obtained a p-value of 0.081, which was close to 0.05. The only exception
was the case of FICMM on Genomics2005 with a p-value of 0.43. The reason may be due to the dependence of different fields
and the unbalanced contribution of each field in the FICMM. In contrast to BM, MM considers all occurrences of every word,
which means that longer fields, such as abstracts, contributed much more than shorter fields, such as titles, in the perfor-
mance of FICMM. Over all, we believe that the significant performance improvement of FICBM over BM on the entire text
(B-whole) and FICMM over MM on the entire text (M-whole) comes from the integration of discriminative ability of each
component model.

5.2. The combination of different component models in FICM

As discussed in Section 2, to make good use of FICM, the component model should be accurate and diverse, which requires
us to assign the best model to each field and to also maintain a diversity of component models. To examine this strategy, we
shall explore the effect of different combination of component models in FICM. Since Reuters1987 is too simple with only
two fields and four possible combinations in FICM, we focus on exploring different combinations of component models
on clustering datasets in the data collections Genomics2004 and Genomics2005, which consists of three fields and eight pos-
sible combinations. First, we identified which model is more suitable, BM or MM, for each independent field. Second, we
checked if the performance of FICM could be improved by configuring a better model to one field with fixed model settings
on the other two fields. Finally, we discussed the optimal configuration of FICM compared with classical BM and MM.

5.2.1. Identifying the best model for each field independently
To identify the best model for each field, it is necessary to know both the important characteristics of each field and the

strengths (and weaknesses) of each model. Alternatively, we may carry out some preliminary experiments on a small train-
ing dataset to elucidate an appropriate model for each field. In Genomics2004 and Genomics2005, considering the distinct
Table 8
The comparison of relative discriminative ability (RDA) of FICBM (FICMM) between superior datasets and neutral datasets in Genomics2004, Genomics2005
and Reuters1987.

Collection Model RDAsup(mean ± standard deviation) RDAneu(mean ± standard deviation) p-Value

Genomics2004 FICBM .944 ± .04 .914 ± .04 6.51e�004
Genomics2005 FICBM .982 ± .05 .943 ± .04 2.09e�004
Reuters1987 FICBM 1.011 ± .11 .928 ± .11 2.80e�003

Genomics2004 FICMM .971 ± .03 .947 ± .04 4.20e�002
Genomics2005 FICMM .966 ± .03 .957 ± .04 0.430
Reuters1987 FICMM 1.042 ± .05 1.023 ± .05 0.081
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features of the MeSH and title fields, we believe that the best model for MeSH and the title field would be BM and MM, with
the following reasons. The MeSH terms are originally organized in a hierarchal structure for indicating the document theme.
Here, both BM and MM treat them flatly without considering this hierarchical information. Some general terms, such as
‘‘human”, ‘‘protein” and ‘‘genetics”, would appear in the MeSH field very frequently, which actually brings little information
for clustering. The situation will become even worse for MM since it favors frequent terms for clustering. Conversely, by con-
sidering binary occurrences only, BM would be more robust against this situation. On the other hand, for the title field, words
that appear usually are very informative and highly related for expressing the document topic. In this situation, MM, in
which the probability for generating each distinct word sums to 1, adds some constraints to those relevant informative
words, and would be more appropriate than BM since the latter deals with the presence/absence of each word indepen-
dently. To examine these hypotheses, we compared the performance of MM and BM on the title and MeSH fields using a
paired t-test. As shown in Table 9, the assignment of these models is justified through the experimental results for both col-
lections. For example, for Genomics2004, B-mesh outperformed M-mesh with S-Pair (+81/94,�5/6), and M-title outperformed
B-title with S-Pair (+89/92,�5/8).
Table 9
The comparison of B-title with M-title, B-abstract with M-abstract and B-mesh with M-mesh in terms of S-Pair.

Data M-title > B-title B-abstract > M-abstract M-abstract > B-abstract B-mesh > M-mesh
K < 8 K P 8

Genomics2004 (+89/92,�5/ 8) (+35/43,�4/ 7) (+35/37,�10/13) (+81/94,�5/ 6)
Genomics2005 (+73/85,�6/15) (+24/29,�12/21) (+34/40,�7/10) (+97/97,�1/3)
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Fig. 1. Comparison of B-abstract with M-abstract for Genomics2004 and Genomics2005: the number of datasets with K topics where one model outperforms
another statistically significant.
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For the abstract field, we speculate that BM would be more suitable on small datasets with few topics, while MM outper-
forms multivariate models definitely on large datasets, which comes from McCallum and Nigam’findings (1998). They com-
pared MM with BM for naive Bayes text classification, and found that BM performed very well on datasets with a limited
vocabulary, while MM usually performed better on datasets with a larger vocabulary size. This finding is also consistent with
our experiments which compared B-abstract with M-abstract. As illustrated in Fig. 1, B-abstract usually outperformed M-ab-
stract on datasets with small number of topics, while M-abstract outperformed B-abstract on datasets with more topics. For
example, for both Genomics2004 and Genomics2005, M-abstract outperformed B-abstract statistically significantly for all 10
datasets with 12 topics. The crossover of B-abstract and M-abstract with similar performance happens when the number of
topics in the dataset is around 8. And thus, by dividing the datasets into two groups: K P 8 or K < 8, we summarized the
comparison of B-abstract and M-abstract in Table 9.

Over all, in Genomics2004 and Genomics2005, the best model for MeSH and title fields would be BM and MM, respec-
tively. And for the abstract field, BM is more suitable than MM when the number of topics in the datasets is small
ðK < 8Þ. Otherwise, MM is more suitable.

5.2.2. Replacing the model setting for only one field in FICM
We compared the performance of different models with paired t-test by changing the model for only one component field

and fixing the models for the other two fields. The hypothesis is that assigning a better model to a field in FICM will improve
the clustering performance.

As shown in Table 10, changing the component model from MM to BM for the MeSH field improved the clustering per-
formance significantly for all combinations. For example, for Genomics2005, F-mmb outperformed F-mmm with S-Pair (+67/
96,�0/4), and F-bbb outperformed F-bbm with S-Pair (+54/94,�2/6). Moreover, Table 11 shows consistently that replacing
MM with BM for the abstract would increase clustering performance when the number of topics is less than 8. The clustering
performance decreased when the number of topics is equal to or larger than 8. For example, for Genomics2004, F-bbb out-
performed F-bmb with S-Pair (+34/43,�2/7) when K < 8 as shown in Table 11, while F-bmb outperformed F-bbb with S-Pair
(+37/41,�6/9) when K P 8 in Table 12. These experimental results are highly consistent with our hypothesis that applying a
better component model will improve the clustering performance of FICM.

Compared with the abstract and MeSH, the effect from changing the model for the title is much weaker and more com-
plicated as illustrated in Table 13. For example, for Genomics2005, F-mbm differed slightly from F-bbm with S-Pair (+5/
53,�4/47), and F-mbb differed slightly from F-bbb with S-Pair (+1/52,�1/48). This indicates that model selection for the ab-
stract or MeSH is more important than model selection for the title with respect to the performance of FICM. A main reason
may be that the title is much shorter compared with the other two fields, so that the performance of FICM is dominated by
the component model setting in abstract and MeSH. Another reason would be the relative high correlation between the title
and the abstract. One popular measure for correlation is the cosine of the angle between two corresponding vectors (cosine
similarity). For each dataset in the Genomics2004 and Genomics2005 collections, the cosine similarities between any two
fields for both MM and BM are computed, and averaged in Table 14. We displayed the highest correlated pair in every com-
bination of data collection and model in boldface. We see that in all four cases, the title–abstract pair always obtained the
largest similarity, which was especially significant in MM. For example, in Genomics2004, the average cosine similarity be-
tween the title and the abstract in MM was 0.46, while the average cosine similarity between the title and the MeSH was
Table 10
Changing model settings on the MeSH field in FICM.

Data F-bbb > F-bbm F-mbb > F-mbm F-bmb > F-bmm F-mmb > F-mmm

Genomics2004 (+30/74,�0/26) (+27/78,�2/22) (+38/91,�0/9) (+47/90,�0/10)
Genomics2005 (+54/94,�2/6) (+51/90,�0/10) (+46/97,�0/3) (+67/96,�0/4)

Table 11
Changing model settings on the abstract field in FICM when K < 8.

Data F-bbb > F-bmb F-bbm > F-bmm F-mbm > F-mmm F-mbb > F-mmb

Genomics2004 (+34/43,�2/7) (+31/43,�3/7) (+29/44,�2/6) (+21/31,�9/19)
Genomics2005 (+25/33,�9/17) (+18/30,�10/20) (+21/30,�11/20) (+27/42,�1/8)

Table 12
Changing model setting on the abstract field in FICM when K P 8.

Data F-bmb > F-bbb F-bmm > F-bbm F-mmm > F-mbm F-mmb > F-mbb

Genomics2004 (+37/41,�6/9) (+32/41,�6/9) (+21/34,�9/16) (+38/44,�4/6)
Genomics2005 (+40/44,�2/6) (+37/44,�3/6) (+27/34,�8/16) (+31/39,�5/11)
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Table 13
Changing model setting on the title field in FICM.

Data F-mbm > F-bbm F-mbb > F-bbb F-bmm > F-mmm F-bmb > F-mmb

Genomics2004 (+9/65,�4/35) (+8/60,�1/40) (+15/74,�0/26) (+13/76,�3/24)
Genomics2005 (+5/53,�4/47) (+1/52,�3/48) (+35/82,�0/18) (+13/68,�0/32)

Table 14
The average cosine similarity (mean ± standard deviation) between any two fields over all datasets in Genomics2004 and Genomics2005.

Data Model Title–abstract Title–MeSH Abstract–MeSH

Genomics2004 BM .30 ± .01 .26 ± .02 .25 ± .01
Genomics2004 MM .46 ± .02 .23 ± .03 .25 ± .01

Genomics2005 BM .31 ± .01 .27 ± .03 .24 ± .02
Genomics2005 MM .46 ± .03 .23 ± .03 .24 ± .02
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0.23, and the average cosine similarity between the abstract and the MeSH was 0.25. In this case, assigning different models
to the title and the abstract, respectively, will usually obtain good clustering results, which confirms the importance of the
diversity among component models. For example, as shown in Table 13, for Genomics2004, F-bmb outperformed F-mmb
with S-Pair (+13/76,�3/24), and F-bmm outperformed F-mmm with S-Pair (+15/74,�0/26), and for Genomics2005 F-bmb
outperformed F-mmb with S-Pair (+13/68,�0/32), and F-bmm outperformed F-mmm with S-Pair (+35/82,�0/18).

In short, assigning a better model to a field in FICM usually improves the clustering performance, with exception on the
title field, which may due to its short length and relative high correlation with the abstract.

5.2.3. Discussion on the best model configuration in FICM
As discussed in Section 2, FICM should work very well if each component model is accurate and diverse. According to this

principle, we attempted to determine the best configurations of FICM for clustering datasets in Genomics2004 and Genom-
ics2005. The basic idea is to assign the best model to each field with the constraint of keeping the diversity of each compo-
nent model. Additionally, for Genomics2004 and Genomics2005, we also found that the effect of model selection on the title
field was much weaker than the other two fields. Here, we first compared different configuration of FICM against the two
classical models: BM (B-whole) and MM (M-whole). In this case, when compared with B-whole, the component setting on
the abstract field in FICM is fixed to BM, and when compared with M-whole, the component setting on the abstract field
in FICM is fixed to MM. In addition, by dividing the datasets into two groups, K P 8 and K < 8, we compared all eight pos-
sible configurations in FICM to find the best combination.

In the first case, since the model setting for abstract is already fixed, we only need to set the models for the other two
fields: title and MeSH. As we discussed before, the best models for MeSH and title are BM and MM, respectively. Considering
the high correlation between title and abstract, we should assign different models to each field. So, we assigned BM to MeSH,
and the complement model of abstract to title. Under these settings, we conducted a comparison experiment for BM by all
possible three combinations of B-whole, F-bbb and F-mbb. Table 15 shows S-Pairs obtained by these combinations. For MM, a
similar comparison experiment was done by using M-whole, F-mmm and F-bmb. Table 16 presented S-Pairs obtained by all
three combinations. We found that clustering performance could be improved, especially in the case of MM. For example, for
Genomics2004, F-mmm outperformed M-whole slightly with S-Pair (+15/63,�0/37), while F-bmb outperformed both M-
whole and F-mmm remarkably with S-Pairs (+78/98,�0/2) and (+58/93,�0/7), respectively. This result is totally true of
Genomics2005.

In addition, by dividing the datasets into two categories, K P 8 and K < 8, we determined the best configuration of FICM.
In the former case, the best model would be F-bmb, while in the latter case, two models, F-mbb and F-bbb, with very close
performances, outperformed all other models significantly. As shown in Table 17, when K P 8, F-bmb performed slightly bet-
ter than F-mmb, which outperformed all other models significantly for both Genomics2004 and Genomics2005. When K < 8,
F-mbb outperformed all other models significantly for both Genomics2004 and Genomics2005, except F-bbb with a perfor-
mance similar to that of F-mbb. The close performance of F-bbb and F-mbb reflects the weak effect of model setting in the title
field. Over all, the experimental results further validate the effectiveness of our strategy of assigning the best component
model to each field while keeping diversity in FICM to achieve good performance.
Table 15
The comparison of B-whole with F-bbb, B-whole with F-mbb and F-bbb with F-mbb in terms of S-Pair.

Data F-bbb > B-whole F-mbb > B-whole F-mbb > F-bbb

Genomics2004 (+41/80,�0/20 (+49/86,�0/14) (+8/60,�1/40)
Genomics2005 (+63/95,�1/5) (+59/94,�0/6) (+1/52,�3/48)
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Table 17
The comparison between F-mbb (F-bbb) with others when K < 8, and the comparison between F-bmb (F-mmb) with others when K P 8 over all datasets in
Genomics2004 and Genomics2005.

Best model Collection F-bbm F-bmm F-mbm F-mmm F-bbb F-bmb F-mbb F-mmb

F-mbb Genomics2004 þ 18
41 ;� 0

9

� �
þ 37

48 ;� 0
2

� �
þ 18

42 ;� 0
8

� �
þ 37

46 ;� 0
4

� �
þ 1

22 ;� 1
28

� �
þ 27

42 ;� 1
8

� �
– þ 27

44 ;� 1
6

� �
ðK < 8Þ Genomics2005 þ 25

48 ;� 0
2

� �
þ 29

44 ;� 2
6

� �
þ 29

47 ;� 0
3

� �
þ 34

45 ;� 1
5

� �
þ 1

23 ;� 2
27

� �
þ 21

31 ;� 9
19

� �
– þ 23

34 ;� 9
16

� �
F-bbb Genomics2004 þ 21

41 ;� 0
9

� �
þ 35

48 ;� 0
2

� �
þ 20

46 ;� 1
4

� �
þ 36

48 ;� 1
2

� �
– þ 34

43 ;� 2
7

� �
þ 1

28 ;� 1
22

� �
þ 29

41 ;� 2
9

� �
ðK < 8Þ Genomics2005 þ 28

48 ;� 1
2

� �
þ 33

41 ;� 1
9

� �
þ 32

49 ;� 1
1

� �
þ 34

43 ;� 1
7

� �
– þ 25

33 ;� 9
17

� �
þ 2

27 ;� 1
23

� �
þ 25

36 ;� 8
14

� �
F-bmb Genomics2004 þ 41

44 ;� 5
6

� �
þ 24

49 ;� 0
1

� �
þ 36

43 ;� 4
7

� �
þ 43

49 ;� 0
1

� �
þ 37

41 ;� 6
9

� �
– þ 31

39 ;� 5
11

� �
þ 8

41 ;� 0
9

� �
ðK P 8Þ Genomics2005 þ 46

48 ;� 2
2

� �
þ 30

50 ;� 0
0

� �
þ 46

48 ;� 0
2

� �
þ 48

50 ;� 0
0

� �
þ 40

44 ;� 2
6

� �
– þ 38

44 ;� 4
6

� �
þ 9

35 ;� 0
15

� �
F-mmb Genomics2004 þ 38

42 ;� 5
8

� �
þ 9

43 ;� 0
7

� �
þ 32

41 ;� 6
9

� �
þ 36

47 ;� 0
3

� �
þ 31

41 ;� 8
9

� �
þ 0

9 ;� 8
41

� �
þ 28

37 ;� 6
13

� �
–

ðK P 8Þ Genomics2005 þ 39
46 ;� 2

7

� �
þ 18

42 ;� 0
8

� �
þ 40

47 ;� 0
3

� �
þ 44

50 ;� 0
0

� �
þ 37

41 ;� 6
9

� �
þ 0

15 ;� 9
35

� �
þ 34

41 ;� 5
9

� �
–

Table 16
The comparison of M-whole with F-mmm, M-whole with F-bmb and F-mmm with F-mbb in terms of S-Pair

Data F-mmm > M-whole F-bmb > M-whole F-bmb > F-mmm

Genomics2004 (+15/63,�0/37) (+78/98,�0/2) (+58/93,�0/7)
Genomics2005 (+12/67,�3/33) (+69/93,�0/7) (+72/98,�0/2)
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5.3. The effect of field weighting: assigning different weights to different fields in FICM

To further explore the capability of FICM, we can assign different weights to different fields. Here we focus on two best
configurations: F-bmb and F-mbb. We use a vector k ¼ ðkt ; ka; kmÞ to represent the weights assigned to fields, where kt ; ka and
km are the weights for the title, abstract and MeSH fields, respectively. For each field, we examined four different k values: 3,
5, 8 and 10. The experimental results of FICM on F-bmb and F-mbb with field weighting, are shown in Tables 18 and 19,
respectively. For example, in Table 18, we first present the performance of original F-bmb without field weighting
ðk ¼ ð1;1;1ÞÞ, and then the performance of F-bmb with field weighting and the corresponding S-Pair between the original
model and the one with field weighting. We highlighted the configuration in boldface that outperformed the original model
significantly. In spite of examining the effect of field weighting on two different collections, Genomics2004 and Genom-
ics2005, and two different configurations: F-bmband F-mbb, we were able to observe almost the same tendency from the
experiment results. That is, weighting the title field moderately was able to improve the clustering performance signifi-
cantly. For example, on the Genomics2005 collection, with ðk ¼ ð3;1;1ÞÞ, the average NMI of F-bmb was improved from
0.724 to 0.735 with S-Pair (+39/80,�1/20). The highest improvement was observed when kt was set to 3 or 5. Overweighing
the title field seems impair the clustering performance. In fact, if we set k ¼ ð10;1;1Þ in the above example, the average NMI
slided from 0.735 ðk ¼ ð3;1;1ÞÞ to 0.727. On the other hand, adding more weights to the abstract and MeSH fields reduced
the clustering performance in almost all cases. For example, on the Genomics2005 collection, with ðk ¼ ð1;3;1ÞÞ, the average
NMI of F-bmb was reduced from 0.724 to 0.701 with S-Pair (+0/12,�45/88). Overall, the performance of FICM can be further
enhanced when we apply the Field Weighting extension to the suitable fields.
Table 18
The effect of changing weights on F-mbb in Genomics2004 and Genomics2005.

k Genomics2004 Genomics2005

NMI S-Pair NMI S-Pair

(1,1,1) .759 ± .06 .724 ± .07

(3,1,1) .766 ± .06 (+22/73,�2/27) .735 ± .07 (+39/80,�1/20)
(5,1,1) .765 ± .06 (+32/65,�7/35) .736 ± .06 (+49/75,�5/25)
(8,1,1) .757 ± .06 (+27/49,�23/51) .732 ± .06 (+49/69,�15/31)
(10,1,1) .750 ± .06 (+19/40,�32/60) .727 ± .06 (+40/60,�20/40)

(1,3,1) .737 ± .07 (+0/5,�61/95) .701 ± .07 (+0/12,�45/88)
(1,5,1) .727 ± .07 (+0/2,�74/98) .692 ± .07 (+1/9,�66/91)
(1,8,1) .719 ± .07 (+0/1,�85/99) .687 ± .07 (+0/3,�72/97)
(1,10,1) .716 ± .07 (+0/2,�86/98) .682 ± .07 (+1/3,�79/97)

(1,1,3) .751 ± .06 (+2/32,�24/68) .706 ± .06 (+2/13,�48/87)
(1,1,5) .739 ± .06 (+2/15,�48/85) .689 ± .06 (+1/6,�74/94)
(1,1,8) .728 ± .06 (+1/6,�66/94) .675 ± .06 (+0/4,�88/96)
(1,1,10) .723 ± .06 (+1/5,�76/95) .667 ± .06 (+0/2,�92/98)
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Table 19
The effect of changing weights on F-bmb in Genomics2004 and Genomics2005.

k Genomics2004 Genomics2005

NMI S-Pair NMI S-Pair

(1,1,1) .756 ± .06 .731 ± .06

(3,1,1) .764 ± .06 (+21/76,�1/24) .738 ± .06 ðþ21=74; �0=26Þ
(5,1,1) .763 ± .06 (+24/63,�4/37) .742 ± .06 (+32/80,�0/20)
(8,1,1) .755 ± .06 (+18/48,�27/52) .740 ± .06 (+37/71,�7/29)
(10,1,1) .751 ± .06 (+11/39,�33/61) .735 ± .06 (+26/58,�13/42)

(1,3,1) .728 ± .06 (+0/1,�77/99) .706 ± .06 (+0/5,�75/95)
(1,5,1) .716 ± .06 (+0/0,�92/100) .696 ± .06 (+0/2,�85/98)
(1,8,1) .710 ± .06 (+0/0,�92/100) .691 ± .06 (+0/1,�87/99)
(1,10,1) .708 ± .06 (+0/1,�91/99) .689 ± .06 (+0/1,�88/99)

(1,1,3) .761 ± .06 (+11/61,�3/39) .724 ± .06 (+7/32,�28/68)
(1,1,5) .755 ± .06 (+8/43,�24/57) .714 ± .06 (+5/20,�56/80)
(1,1,8) .746 ± .06 (+5/31,�43/69) .700 ± .06 (+4/13,�72/87)
(1,1,10) .739 ± .06 (+5/23,�52/77) .690 ± .06 (+3/9,�80/91)
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6. Conclusions

We have presented a probabilistic model, FICM, for clustering multi-field text documents. The advantage of FICM comes
from the integration of the discriminative ability of each field and the power of choosing the most suitable generative model
for each field. In order to achieve good performance, the component models of FICM should be accurate and diverse. We have
experimentally shown that a direct extension of the classical BM and MMs by FICM, FICBM and FICMM, are able to achieve a
better performance, and by configuring each field with a suitable model, we obtain much better clustering results. The com-
ponent model setting is practical when we have some prior knowledge on the fields, such as BM for MeSH field in our work,
which can improve the performance significantly. Alternately, we can carry out some preliminary experiments on the data-
set to determine the suitable model for each field. In addition, we introduced a ‘Field Weighting’ extension, which assigns
different weights to different fields in FICM, and found that it can further improve the clustering performance significantly.
Over all, we emphasize that our idea of selecting the best model for each field and of integrating them independently can be
applied to other documents with multiple fields, meaning that FICM is capable of improving the performance of clustering
documents in other applications.

In our experiments, the number of documents in each dataset ranges from 52 to 1960. We would like to examine the per-
formance of FICM on some larger datasets in the future. Techniques for determining the number of topics in the dataset (Che-
ung, 2005) is likely to be incorporated into FICM. Finally, we hope that FICM will be applied to another clustering problem
where it also has multiple components that can be modeled separately and integrated.
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