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ABSTRACT

We describe and demonstrate the effectiveness of a
method of predicting protein secondary structures, β-
sheet regions in particular, using a class of stochastic
tree grammars as representational language for their
amino acid sequence patterns. The family of stochas-
tic tree grammars we use, the Stochastic Ranked Node
Rewriting Grammars (SRNRG), is one of the rare fam-
ilies of stochastic grammars that are expressive enough
to capture the kind of long-distance dependencies ex-
hibited by the sequences of β-sheet regions, and at the
same time enjoy relatively efficient processing. We ap-
plied our method on real data obtained from the HSSP
database and the results obtained are encouraging: Us-
ing an SRNRG trained by data of a particular protein,
our method was actually able to predict the location
and structure of β-sheet regions in a number of dif-
ferent proteins, whose sequences are less than 25 per
cent homologous to the training sequences. The learn-
ing algorithm we use is an extension of the ‘Inside-
Outside’ algorithm for stochastic context free gram-
mars, but with a number of significant modifications.
First, we restricted the grammars used to be mem-
bers of the ‘linear’ subclass of SRNRG, and devised
simpler and faster algorithms for this subclass. Sec-
ondly, we reduced the alphabet size (i.e. the number of
amino acids) by clustering them using their physico-
chemical properties, gradually through the iterations
of the learning algorithm. Finally, we parallelized our
parsing algorithm to run on a highly parallel computer,
a 32-processor CM-5, and were able to obtain a nearly
linear speed-up. We emphasize that our prediction
method already goes beyond what is possible by the
homology-based approaches. We also stress that our
method can predict the structure as well as the location
of β-sheet regions, which was not possible by previous
inverse protein folding methods.
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Introduction

The problem of predicting protein structures from their
amino acid sequences is probably the single most im-
portant problem in genetic information processing with
immense scientific significance and broad engineering
applications. The secondary structure prediction prob-
lem, namely the problem of determining which regions
in a given amino acid sequence correspond to each
of the three categories, α-helix, β-sheet, and others,
is considered to be an important step towards this
goal, and has been attempted by many researchers (e.g.
(Rost & Sander 1993)). No method to date, however,
has achieved a prediction accuracy much higher than
70 per cent, casting serious doubt as to whether a sig-
nificantly better performance is achievable by any ap-
proach along this line.

Motivated largely by the apparent limitation of
residue-wise secondary structure prediction methods,
more ‘knowledge intensive’ approaches to the problem
of protein structure prediction have been proposed and
investigated, including the homology-based approach
(Blundell et al. 1987) and the ‘inverse protein fold-
ing’ approach (Bowie, Luthy, & Eisenberg 1991). More
recently it has been proposed (Chothia 1992) that all
protein structures (foldings) found in today’s living or-
ganisms can be classified into a relatively small number
(less than a thousand or so) of types, in confirmation of
such knowledge intensive approaches. In a knowledge-
based approach, the prediction method keeps effec-
tively a catalogue of patterns of amino acid sequences
corresponding to existing types of protein structures,
and prediction on a new sequence is done by simply
finding those patterns that match parts of the input
sequence. The central issue here then is how to rep-
resent these patterns with a sufficient and appropriate
level of generalization. Abe and Mamitsuka have re-



cently proposed to use a certain class of stochastic tree
grammars called the Stochastic Ranked Node Rewrit-
ing Grammars (SRNRG) as representational scheme
for sequence patterns of protein secondary structures,
especially those of β-sheets (Abe & Mamitsuka 1994).
The primary goal of the present paper is to demon-
strate its effectiveness by further experimental results.

The problem of predicting β-sheet regions has been
considered difficult because β-sheets typically range
over several discontinuous sections in an amino acid
sequence, and their sequences exhibit long distance
dependency. The family of stochastic tree grammars
we use in the present paper (SRNRG) is suitable for
expressing the kind of long-distance dependencies ex-
hibited by the sequences of β-sheet regions, such as
the ‘parallel’ and ‘anti-parallel’ dependencies and their
combinations. RNRG was originally introduced in
the context of computationally efficient learnability of
grammars in (Abe 1988), and its discovery was inspired
by the pioneering work of Joshi et al. (Joshi, Levy,
& Takahashi 1975; Vijay-Shanker & Joshi 1985) on a
formalism for natural language called ‘Tree Adjoining
Grammars’ (TAG). SRNRG is one of the rare families
of grammatical systems that have both enough expres-
sive power to cope with such dependencies and at the
same time enjoy efficient parsability and learnability.1

In particular, SRNRG has expressive power exceed-
ing those of both Hidden Markov Models (HMMs) and
stochastic context free grammars (SCFGs), and yet al-
lows the existence of polynomial time parsing and lo-
cal optimization algorithm for the maximum likelihood
settings of probability parameters.2

We designed and implemented a method for predict-
ing β-sheet regions using SRNRG as the representa-
tional language. Our prediction method receives as in-
put amino acid sequences with the location of β-sheet
regions marked, and trains the probability parameters
of an SRNRG, so that its distribution best approxi-
mates the patterns of the input sample. Some of the
rules in the grammar are intended a priori for generat-
ing β-sheet regions and others for non-β-sheets. After
training, the method is given a sequence of amino acids
with unknown secondary structure, and predicts ac-
cording to which regions are generated by the β-sheet

1 Searls claimed that the language of β-sheets is beyond
context free and suggested that they are indexed languages
(Searls 1993). Indexed languages are not recognizable in
polynomial time, however, and hence indexed grammars
are not useful for our purpose. RNRG falls between them
and appears to be just what we need.

2 Both HMM and SCFG have recently been used in the
context of genetic information processing (Brown et al.

1993; Asai, Hayamizu, & Onizuka 1993; Sakakibara et al.

1994).

rules, in the most likely parse for the input sequence.

The learning algorithm we use is an extension of
the ‘Inside-Outside’ algorithm for the stochastic con-
text free grammars.3 In order to reduce the rather
high computational requirement4 of the learning and
parsing algorithms, we have restricted the form of
grammars to a certain subclass of RNRG which we
call the ‘linear RNRG,’ and devised a simpler and
faster learning algorithm for the subclass. We also
employed a method of reducing the alphabet size5

(i.e. the number of amino acids) by clustering them
using MDL(Minimum Description Length) approxima-
tion and their physico-chemical properties, gradually
through the iterations of the learning algorithm.6 Fi-
nally, we also parallelized our parsing algorithm to run
on CM-5, a 32-processor parallel machine. We were
able to obtain a nearly linear speed-up, and were able
to predict the structure of a test sequence of length 50
in about 6 minutes, whereas the same task took our
sequential algorithm almost 3 hours.

We applied our method on real data obtained from
the HSSP (Homology-derived Secondary Structures of
Proteins Ver 1.0 (Sander & Schneider 1991)) database.
The results obtained indicate that our method is able
to capture and generalize the type of long-distance
dependencies that characterize β-sheets. Using an
SRNRG trained by data for a particular protein, our
method was actually able to predict the location and
structure of β-sheets in test sequences of a number of
different proteins, which have similar structures but
have less than 25 per cent pairwise homology to the
training sequences. We also conducted a similar ex-
periment using two proteins, which have quite differ-
ent structures but share some similar partial struc-
tures, having almost no pairwise homology at all. Our
method was able to predict two of the three β-strands
in the test sequence correctly in this case. We empha-
size that, unlike previous secondary structure predic-
tion methods, our method is able to predict the struc-

ture of the β-sheet, namely the locations of the hy-
drogen bonds. We also stress that, since the training
sequences and the test sequences are less than 25 per
cent homologous, all of our prediction problems be-

3 It is also related to the extension of the Inside-Outside
algorithm developed for the stochastic tree adjoining gram-
mars (Schabes 1992).

4 The time complexity of the Inside-Outside algorithm
for RNRG of a bounded ‘rank’ k is roughly O(n3(k+1)).

5 As is well known, there are twenty amino acids, and
hence we are dealing with an alphabet of size 20.

6 The physico-chemical properties we use are the molec-
ular weight and the hydrophobicity, which were used in
(Mamitsuka & Yamanishi 1992) in their method for pre-
dicting α-helix regions.



long to what is sometimes referred to in the literature
as the ‘Twilight Zone’ (Doolittle et al. 1986), where
alignment is no longer effective.

Modeling Beta Sheet Structures with

RNRG

We first briefly review the definition of the Ranked
Node Rewriting Grammar (RNRG) and give some il-
lustrative examples.7 An RNRG is a tree generating
system, and consists of a single tree structure called
the starting tree, and a finite collection of rewriting
rules which rewrite a node in a tree with an incom-
plete tree structure. The node to be rewritten needs to
be labeled with a non-terminal symbol, and must have
the same number of descendants (called the ‘rank’ of
the node) as the number of ‘empty nodes’ in the in-
complete tree structure. After rewriting, the descen-
dants of the node are attached to these empty nodes
in the same order as before rewriting. The string lan-
guage of the grammar is the set of yields of the trees
generated by the grammar, namely the strings that
appear on the leaves of the trees. If we place an up-
per bound, say k, on the rank of a node that can be
rewritten, we obtain families of grammars, RNRG(k),
each of which has varying expressive power. The string
languages of RNRG(0), denoted RNRL(0), equal the
context free languages (CFL), those of RNRG(1) equal
the tree adjoining languages (TAL), and for any k ≥ 2,
RNRL(k) properly contains RNRL(k − 1). We now
give some examples of RNRG grammars. The lan-
guage L1 = {wwRwwR|w ∈ {a, b}} is generated by
the RNRG(1) grammar G1 shown8 in Figure 1(a).
The ‘3 copy’ language L2 = {www | w ∈ {a, b}∗} can
be generated by the RNRG(2) grammar G2 shown in
Figure 1(b). Note that L1 can be generated by a tree
adjoining grammar, but not L2. The way the deriva-
tion in RNRG takes place is illustrated in Figure 2,
which shows the derivation of the string ‘ababab’ by
G2. Each of the trees shown in Figure 2 is called a
‘partially derived tree.’ Note that the tree structure
introduced by a particular rule may be split into sev-
eral pieces in the final derived tree, unlike usual parse
trees in CFG. (In the figure, the part of the derived tree
introduced by (α1) is indicated in a thick line.) Given
the definition of RNRG, the stochastic RNRG is de-
fined analogously to the way stochastic CFG is defined
from CFG. That is, associated with each rewriting rule
in a stochastic RNRG is its rule application probabil-

ity, which is constrained so that for each non-terminal,

7 We refer the interested reader to (Abe 1988) for the
detailed definition.

8 Note that ‘λ’ indicates the empty string, and an edge
leading to no letter leads to an empty node.

the sum total of rule application probabilities of all
the rewriting rules for that non-terminal equals unity.
This way, each stochastic RNRG can be viewed as a
probabilistic generator of finite strings, and defines a
probability distribution over the set of all finite strings.

Next some typical β-sheet structures are illustrated
in Figure 3. Figure 3(e) shows a picture of an actual
β-sheet structure (Branden & Tooze 1991), whereas all
others are schematical representations. The arrows in-
dicate the β-sheet strands, and the line going through
them the amino acid sequence. The β-sheet structure
is retained by hydrogen bonds (H-bonds) between the
corresponding amino acids in neighboring strands, so
it is reasonable to suspect that there are correlations
between the amino acids in those positions. The struc-
ture exhibited in Figure 3 (a) is known as the ‘anti-
parallel’ β-sheet, as the dependency follows the pattern
abc..cba..abc...cba, where the use of a same letter indi-
cates that those positions are connected by H-bonds
and believed to be correlated. In contrast, the struc-
ture exhibited in Figure 3 (b) is known as the ‘parallel’
β-sheet, since the dependency here is of the pattern
abc..abc... Both of these types of dependency can be
captured by RNRG, in particular, G1 and G2 in Fig-
ure 1, respectively. These structures can be combined
to obtain larger β-sheets, as is shown in Figure 3(d)
and can result in a high degree of complexity, but they
can be handled by an RNRG of a higher rank.

Learning and Parsing of The Linear

Subclass

The ‘linear’ subclass of RNRG we use in this paper is
the subclass satisfying the following two constraints:
(i) Each rewriting rule contains at most one node la-
beled with a non-terminal symbol of rank greater than
0; (ii) Every other non-terminal (of rank 0) is a ‘lexi-
cal’ non-terminal, namely all rewriting rules for it are
of the form A → a for some terminal symbol a. Exam-
ples of RNRG of rank 1 satisfying these constraints can
be found, for example, in Figure 4(a). Note that each
occurrence of a lexical non-terminal can be thought of
as defining a distribution over the alphabet, and this is
written in as part of the rule in the figure. In our cur-
rent scenario in which the alphabet equals the amino
acids, the rule application probabilities for these lexical
rules are called ‘amino acid generation probabilities.’
With these constraints, the parsing and learning algo-
rithms can be significantly simplified.

The Learning Algorithm

Our learning algorithm is an extension of the ‘Inside-
Outside’ algorithm for SCFG (Jelinik, Lafferty, & Mer-
cer 1990) and it is a local optimization algorithm for
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the maximum likelihood settings of the rule applica-
tion probabilities and the amino acid generation prob-
abilities in the input grammar. The algorithm is an
iterative procedure which re-estimates and updates its
current settings of all of its probability parameters.
The re-estimation of the rule application probabilities
is done essentially by taking the weighted frequency of
each rule application, weighted according to the likeli-
hood assigned to the derivations by the current param-
eter settings, divided by the weighted frequency of the
non-terminal on the right hand side of that rule. These
weighted frequencies can be calculated in terms of what
are called the ‘inside’ and ‘outside’ probabilities, which
correspond to the ‘forward’ and ‘backward’ probabili-
ties in the Baum-Welch algorithm for HMM (Rabiner
& Juang 1986). The re-estimation procedure is guaran-
teed to increase the likelihood assigned to the sample,
as is the case with the Baum-Welch re-estimation for
HMM. For simplicity, we describe our algorithm for
rank 1 linear SRNRG.

Let Ξ be the input sample, and let σ denote an ar-
bitrary sequence in Ξ and N be its length. Let σt

denote the t-th letter (amino acid) of σ. We define
the ‘inside probability’ of non-terminal S at i, j, k, l on
σ, written Inσ[S, i, j, k, l], to be the sum total of the
probabilities of all partially derived trees whose (two
discontinuous) yields match the sub-strings from the
i-th to the j-th and from the k-th to the l-th letters of
σ. Similarly, we define the ‘outside probability’ of non-
terminal S at i, j, k, l on σ, written Outσ[S, i, j, k, l], to
be the sum total of the probabilities of all partially
derived trees whose (three discontinuous) yields match
the sub-strings from the first to the i-th, from the j-th
to the k-th, and from the l-th to the N -th letters of σ.

Now let G be the input grammar, and let N(G) de-
note the set of non-terminals of G. For each rewriting
rule r in G, let T (r) denote the rule application prob-
ability of r, and L(r) and R(r) the non-terminal of the
left hand side and the (unique) non-terminal on the
right hand side of r, respectively. Let nr

f , f = 1, ..., 4,
denote the number of terminal symbols at each of the
four corners (left up, left low, right low, and right up)
of the unique (if any) non-terminal symbol in the right
hand side of r, and P

r,x
f (α), α = 1, ..., 20, denote the

generation probability of amino acid α at the x-th po-
sition in the f corner.

The inside and outside probabilities are calculated
as follows. The inside probabilities at arbitrary index
(i, j, k, l) can be defined recursively solely in terms of
the inside probabilities of ‘smaller’ intervals, so it can
be calculated as long as the inside probabilities at those
(i′, j′, k′, l′) such that (j′−i′)+(l′−k′) < (j−i)+(l−k)
have already been calculated. The looping used in the

procedure for calculating inside probabilities exhibited
below ensures that this condition is satisfied.

For i := N to 1
For j := i to N

For k := N to j + 1
For l := k to N

For S ∈ N(G)

Inσ[S, i, j, k, l] =
∑

{r∈G|L(r)=S}

{ T (r) · Inσ[R(r), i+nr
1, j−nr

2, k+nr
3, l−nr

4] ·

nr

1∏

x=1

P
r,x
1 (σi+x)

nr

2∏

x=1

P
r,x
2 (σj−x)

nr

3∏

x=1

P
r,x
3 (σk+x)

nr

4∏

x=1

P
r,x
4 (σl−x) }

The outside probabilities can be calculated in a similar
fashion, as shown below.

For i := 1 to N

For j := N to i + 1
For k := j to N

For l := N to k + 1
For S ∈ N(G)

Outσ[S, i, j, k, l] =
∑

{r∈G|R(r)=S}

{ T (r) · Outσ[L(r), i−nr
1, j+nr

2, k−nr
3, l+nr

4] ·

nr

1∏

x=1

P
r,x
1 (σi−x)

nr

2∏

x=1

P
r,x
2 (σj+x)

nr

3∏

x=1

P
r,x
3 (σk−x)

nr

4∏

x=1

P
r,x
4 (σl+x) }

Given the inside and outside probabilities, the up-
dates of the rule application probabilities, as well as the
amino acid generation probabilities, can be calculated
as follows. Let Uσ(r) denote the ‘weighted average
frequency’ of rewriting rule r, namely the average fre-
quency of r in a single parse of σ, weighted according to
the generation probability of each parse using the cur-
rent settings of the probability parameters. Similarly
define V r,f,x

σ (α) to be the weighted average frequency
of amino acid α at the x-th position of corner f in rule
r in a single parse of σ. Now if we let Prσ[r, i, j, k, l]
denote the probability that the grammar generates the
input sequence σ and uses rule r at the (i, j, k, l) posi-
tion, then it can be calculated as follows.

Prσ[r, i, j, k, l] =Outσ[L(r), i, j, k, l]·

Inσ[R(r), i+nr
1+1, j−nr

2−1, k+nr
3+1, l−nr

4−1] ·



T (r) ·

nr

1∏

x=1

P
r,x
1 (σi+x)

nr

2∏

x=1

P
r,x
2 (σj−x)

nr

3∏

x=1

P
r,x
3 (σk+x)

nr

4∏

x=1

P
r,x
4 (σl−x)

Now Uσ(r) can be calculated by summing
Prσ[r, i, j, k, l] over all i, j, k, l, and dividing it by the
likelihood assigned to σ by the current parameter set-
tings, P (σ).

Uσ(r) =

∑
i

∑
j

∑
k

∑
l Prσ[r, i, j, k, l]

P (σ)

Similarly V r,f,x
σ (α) can be calculated as follows. (We

show the case f = 1 only.)

V r,1,x
σ (α) =

∑
i

∑
j

∑
k

∑
l

∑
σi+x=α Prσ[r, i, j, k, l]

P (σ)

Finally, from Uσ(r) and V r,f,x
σ (α), the update val-

ues for the rule application probabilities T (r) and the
amino acid generation probabilities P

r,x
f (α) can be cal-

culated as follows.

T (r) =

∑
σ∈Ξ Uσ(r)∑

σ∈Ξ

∑
{r′∈G|L(r′)=L(r)} Uσ(r′)

P
r,x
f (α) =

∑
σ∈Ξ V r,f,x

σ (α)
∑

σ∈Ξ

∑
α′ V

r,f,x
σ (α′)

The above process is repeated until some stopping con-
dition is satisfied, usually till the changes in the proba-
bility parameters become smaller than a certain preset
amount.

The parsing algorithm can be obtained by replacing
‘
∑

’ by ‘max’ in the definition of the ‘Inside’ algorithm,
and retaining the most likely sub-parse at any interme-
diate step.

Reducing the Alphabet Size with MDL
Approximation

After each iteration of the above learning algorithm
at each lexical rule, we attempt to merge some of the
amino acids, if the merge reduces the total description
length (approximated using the probability parame-
ters calculated up to that point). For this purpose
we make use of the Euclidean distance between the 20
amino acids in the (normalized) 2-dimensional space
defined by their molecular weight and hydrophobicity.
At each iteration, we select the two among the clus-
ters from the previous iteration, which are closest to
each other in the above Euclidean space, and merge
them to obtain a single new cluster, provided that the

merge results in reducing the following approximation
of ‘description length,’ where we let c ∈ C be the clus-
ters, P (c) the sum total of generation probabilities of
amino acids in the cluster c, and m the effective sam-
ple size, namely the weighted frequency of the lexical
rule in question in the parses of the input sample, i.e.
m =

∑
σ∈Ξ

∑
α V r,f,x

σ (α).

−
∑

c∈C

P (c) log
P (c)

|c|
+

|C| log m

2
.

Note that the above approximation of description
length by the average minus log-likelihood of the cur-
rent values of the probability parameters is accurate
only if those probability values are reliable. The algo-
rithm keeps merging more clusters in this fashion, but
once it fails to merge one pair, it will not try to merge
any other pair in the same iteration, in order to ensure
that the merge process does not take place too fast.

Parallel Implementation of Parsing
Algorithm on CM-5

As we noted in Introduction, we parallelized our pars-
ing algorithm to run on a 32-processor CM-5. In par-
allelizing this algorithm, we isolated the data depen-
dency by introducing as the outmost loop parameter,
d (d = (j− i)+(l−k) in the rank 1 case), which stands
for the total length of all the sub-strings that are out-

side those designated by the current indices. That is,
we replace the first four For loops in the algorithm for
calculating the outside probabilities by those shown
below.

For d := N to 1
For i := 0 to N − d

For j := i + 1 to i + d

For l := i + d to N

This way, the computation of all table entries for a
given d could in principle be performed in parallel. In
order to keep our parallel algorithm simple, we desig-
nated one of the 32 processors, say P31, as the data
routing center to which the other 31 processors send
all the updated entries, for each value of d. Every
time d is updated, the relevant part of the updated
table at P31 is copied to the local memory of each
of the other 31 processors. As this copying need be
done only N times (where N is the length of the in-
put string), the communication overhead occupies an
asymptotically diminishing portion of the entire com-
putation time, thus making it possible for us to obtain
a nearly linear speed-up, when N is sufficiently large.

Experimental Results

We applied our method on real data obtained from
the HSSP database. In our first experiment, we
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Figure 4: (a) A part of the acquired RNRG grammar and (b) its interpretation.

picked three different proteins, ‘Fasciculin’ (1fas), ‘Cal-
diotoxin’ (1cdta) and ‘Neurotoxin B’ (1nxb), all of
which are toxins. Although these three proteins do
have relatively similar structures (Their common struc-
ture was shown in Figure 3(e)), their sequences are
less than 25 per cent homologous to one another,9

and hence alignment alone can hardly detect this sim-
ilarity. We trained a stochastic RNRG with train-
ing data consisting effectively of bracketed sequences
for one of the three proteins, say 1fas, and used the
acquired grammar to predict the location of β-sheet
regions in an amino acid sequence of another one of
the three, either 1cdta or 1nxb. By bracketing the
input sequences, we mean that we isolated out the
(discontinuous) sub-strings of the training sequences
that correspond to β-sheets from the rest, and trained
the probability parameters of the ‘β-sheet rules’ in the
grammar with them.10 The probability parameters
of the non-β-rules were set to be uniform. We then
used the acquired stochastic RNRG grammar to parse
an amino acid sequence of either 1cdta or 1nxb, and
predicted the location of β-sheet regions according to
where the β-sheet rules are in the most likely parse. It
was able to predict the location of all three β-strands
contained in the test sequence almost exactly (miss-

9 These were obtained using PDB SELECT (25 %) de-
veloped by Hoboem et. al. (Hoboem et al. 1992).

10 Bracketed input samples are often used in applications
of SCFG in speech recognition.

ing only one or two residues which were absent in all
of the training data) in both cases. We repeated the
same experiment for all (six) possible combinations of
the training data and a test sequence from the three
proteins. Our method was able to predict all three
of the β-strands in all cases, except in predicting the
location of β-sheet in a test sequence for 1cdta from
training data for 1nxb: It failed to identify one of the
three β-strands correctly in this case. The sequences of
these toxins were approximately 60 residue long, and
the parsing of these sequences required more than an
hour on a Silicon Graphics Indigo II graphic worksta-
tion.

Figure 4(a) shows the part of the stochastic
RNRG(1) grammar obtained by our learning algorithm
on the training set for 1fas that generates the β-sheet
regions. Note that, in the figure, the amino acid gen-
eration probabilities at each position are written in a
box. For example, the distribution at the right up-
per corner in (α4) gives probability 0.80 to the cluster
{I, L, V } and probability 0.10 to the single amino acid
Y . The interpretation of the grammar is summarized
schematically in Figure 4(b). It is easy to see that
the grammar represents a class of β-sheets of type (c)
in Figure 3. Each of the rules (α1), (α2), (α3), (α4),
(α6) and (α7) generates part of the β-sheet region cor-
responding to a row of H-bonds, and (α5) inserts an
‘extra’ amino acid that does not take part in any H-
bond. Rule (α4) says that in the third (from the top)
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Figure 5: (a) The parse of the test sequence and (b) its interpretation.

row of H-bonds, amino acids I, L and V are equally
likely to occur in the leftmost strand, and it is very
likely to be K in the middle strand. Note that I, L,

and V have similar physico-chemical properties, and it
is reasonable that they were merged to form a cluster.

Figure 5(a) shows the most likely parse (derived
tree) obtained by the grammar on a test sequence of
1cdta. The shaded areas indicate the actual β-sheet
regions, which are all correctly predicted. The seven
types of thick lines correspond to the parts of the de-
rived tree generated by the seven rules shown in Fig-
ure 4(a), respectively. The structural interpretation
of this parse is indicated schematically in Figure 5(b),
which is also exactly correct. Note that the distri-
butions of amino acids are quite well spread over a
large number of amino acids. For example, none of the
amino acids in the third strand of the test sequence, ex-
cept the last two Cs, receives a dominantly high prob-
ability in the acquired grammar. The merging of I, L

and V mentioned above, therefore, was crucial for the
grammar to be able to predict the third strand of the
β-sheet in the test sequence.

We also conducted a similar experiment using two
proteins, which have very different structures but share
some similar partial structures, and have almost no
pairwise homology at all. These are ‘Azurin’ (2azaa)
and ‘Apoamicyanin’ (1aaj), and we trained an SRNRG
with sequences of 2azaa and attempted to predict the
β-sheet locations in a 1aaj test sequence.

Figure 6 shows the test sequence and part of the
training sequences we used. (The actual training se-
quences are a little longer.) Note that the locations of
the β-strands in them are significantly different: The

two rightmost β-strands are much closer to each other
in the sequence of 1aaj. (Parts of the sequences corre-
sponding to β-strands are indicated with square boxes
in the figure.) Our method was able to predict two
of the three β-strands (the rightmost two) correctly in
this case. The most likely parse is indicated in Fig-
ure 7, and the shaded areas indicate the predicted β-
sheet regions as before. The reason why the leftmost
strand was missed by two residues seems to be that the
portion of the test sequence that is predicted to be a β-
strand, ‘VVDIAK,’ is remarkably similar to the actual
β-strand portions in a number of training sequences,
for example, to ‘SVDIAG’ of the second sequence to
the last. Since the training sequences were obtained
by aligning sequences (with unknown secondary struc-
ture) to the sequence of 2azaa (with known structure)
and marking the regions corresponding to β-sheets in
the 2azaa sequence as β-sheets, the reason for this
failure might very well be in the process of generat-
ing training data by alignment, not in the prediction
method itself. The test sequence we used (for ‘1aaj’)
was 80 residue long, and the parsing of this sequence
took approximately 15 hours on an Indigo II graphic
workstation.

Finally, we mention how much speed-up was ob-
tained by our parallel parsing algorithm on CM-5. Fig-
ure 8(a) shows the processing time (for parsing) in sec-
onds for input sequences of varying lengths, by our
sequential parsing algorithm and by its parallel imple-
mentation on CM-5, respectively. Figure 8(b) shows
the speed-up factor achieved by the parallel parsing
algorithm as a function of the input length. For exam-
ple, for input length of 50, our parallel implementation



The test sequence:

AAAEVADGAIVVDIAKMKYETPELHVKVGDTVTWINREAMPHNVHFVAGVLGEAALKGPMMKKEQAYSLTFTEAGTYDYH

The training data:

..CDVSIEGNDSMQFNTKSIVVDKTCKEFTINLKHTGKLPKAAMGHNVVVSKKSDESAVATDGMKAGLNNDYVKAGDERVIAHTSVIGGGETDSVT· · ·

AECSVDIQGNDQMQFSTNAITVDKACKTFTVNLSHPGSLPKNVMGHNWVLTTAADMQGVVTDGMAAGLDKNYVKDGDTRVIAHTKIIGSGEKDSVT· · ·

AECSVDIAGTDQMQFDKKAIEVSKSCKQFTVNLKHTGKLPRNVMGHNWVLTKTADMQAVEKDGIAAGLDNQYLKAGDTRVLAHTKVLGGGESDSVT· · ·

AECKVDVDSTDQMSFNTKEITIDKSCKTFTVNLTHSGSLPKNVMGHNWVLSKSADMAGIATDGMAAGIDKDYLKPGDSRVIAHTKIIGSGEKDSVT· · ·

AECKVTVDSTDQMSFDTKAIEIDKSCKTFTVDLKHSGNLPKNVMGHNWVLTTQADMQPVATDGMAAGIDKNYLKEGDTRIIAHTKIIGAGETDSVT· · ·

AECSVDIQGNDQMQFNTNAITVDKSCKQFTVNLSHPGNLPKNVMGHNWVLSTAADMQGVVTDGMASGLDKDYLKPDDSRVIAHTKLIGSGEKDSVT· · ·

AGCSVDVEANDAMQYNTKNIDVEKSCKEFTVNLKHTGSLPKNVMGHNLVITKTADFKAVMNDGVAAGEAGNFVKAGDARVVAHTKLVGGGEKDSVK· · ·

AECKTTIDSTDQMSFNTKAIEIDKACKTFTVELTHSGSLPKNVMGHNLVISKQADMQPIATDGLSAGIDKNYLKEGDTRVIAHTKVIGAGEKDSLT· · ·

ASCETTVTSGDTMTYSTRSISVPASCAEFTVNFEHKGHMPKTGMGHNWVLAKSADVGDVAKEGAHAGADNNFVTPGDKRVIAFTPIIGGGEKTSVK· · ·

.NCAATVESNDNMQFNTKDIQVSKACKEFTITLKHTGTQPKASMGHNLVIAKAEDMDGVFKDGVGAAD.TDYVKPDDARVVAHTKLIGGGEESSLT· · ·

.NCAATVESNDNMQFNTKDIQVSKACKEFTITLKHTGTQPKASMGHNLVIAKAEDMDGVFKDGVGAAD.TDYVKPDDARVVAHTKLIGGGEESSLT· · ·

AQTVEVRAAPDALAFAQTSLSLPAN....TVVRLDFVNQNNLGVQHNWVLVNGGDDVAAAVNTAAQNNAALFVPPGDTNALXWTAMLNAGESGSVT· · ·

Figure 6: The training data and the test sequence

AAAEVADGAIVVDIAKMKYETPELHVKVGDTVTWINREAMPHNVHFVAGVLGEAALKGPMMKKEQAYSLTFTEAGTYDYH
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Figure 7: The most likely parse for a test sequence of ‘1aaj.’

achieved a speed-up factor of 28, a nearly linear speed-
up with 31 parallel processors.

Concluding Remarks

We have described a method for predicting protein
secondary structures, using a class of stochastic tree
grammars as representational language for their amino
acid sequence patterns. Our experimental results, ad-
mittedly, were only preliminary results in which the
test sequences were known to contain relatively sim-
ilar structures to those of the training sequences. In
the future, we hope to demonstrate that our method
can achieve a high prediction accuracy on an arbitrary

test sequence, when equipped with a large catalogue
of generalized patterns, expressed as SRNRG rules.
One of the most serious obstacles in attempting such
a full scale experimentation is the high computational
requirement of our method. We hope to overcome this
by parallelization and other efforts to speed up our al-
gorithms.
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